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Abstract

An integral equation approach based on the mixed-potential formulation i~ devel-
oped for the analysis of radiation. scattering and guidance of electromagnetic waves
by arbitrarily shaped conducting objects in lavered uniaxial media. This method i<
successfully applied to rigorously analyze coax- and wavegnide-fed microstrip patch
antennas of various shapes. as well as multiconductor transnmission hues with con-
ductors of various cross-section profiles. embedded in multilavered media. With the
approach developed here, microstrip structures of various. possibly irregular shapes.
embedded in multilayered isotropic or uniaxial substrates. mayv be investigated within

one theoretical framework and using the same computer program.
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Preface

This report comprises five technical papers written by the principal tnvestigator and
his collaborators. The umfying theme is the development and application of the
mixed-potential integral equation (MPIE) formulation to the analysis of radiation.
scattering and guidance of electromagnetic waves by conducting objects embedded in
lavered material media, with emphasis on non-planar structures having irregular or
arbitrary shapes. The papers included here have heen submitted for publication in
scientific journals and, hence. are to a large degree self-contained. As a result. there

is a certain amount of overlap in the material they cover.
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Formulation of Mixed-Potential Integral Equations
for Arbitrarily Shaped Microstrip Structures
with Uniaxial Substrates

Krzysztof A. Michalski

Electromagnetics & Microwave Laboratory
Department of Electrical Engineering
Texas ALM University

College Station. Texas 77843-3128. USA

Running head: Formulation of Mixed-Potential Integral Equations
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Abstract—A systematic development is presented of three distinct mixed-potential
integral equations for the analysis of printed circuits, microstrip resonators. and an-
tennas embedded in multi-layered. planar. uniaxial media of infinite Jateral extent.
with emphasis on microstrip structures comprising non-planar conductors of irregular

or arbitrary shapes.

1 Introduction

Most of the analysis methods presently available for the analyvsis of microstrip struc-
tures are either limited to or optimized for planar geometries with regu'c: shapes.
However, in view of the recent advances in the development of the monolithic mi-
crowave and millimeter-wave integrated circuits. it is increasingly important to have
at one’s disposal techniques, which would make it possible to accerrately and efficiently
analyze more complex microstrip geometries, comprising no.-planar conductors. In
this paper, we discuss an integral equation approach. » nich we have found to he
especially suitable for this task. More specifically, we -tevelop three distinct forms of
the so-called mixed-potential integral equation (MPIE} {1]. [2] for arbitrarily shaped

conducting objects embedded in a planar. multi-layered, material medium of infinite




lateral extent, which may be nmaxially anisotropic. The distinguishing featnre of the
MPIE formulations is that they employ vector and scalar potentials, which are ex.
pressed. respectively. in terms of the current and charge densities. Thev are preferable
to other forms of the electric field integral equation (EFIE ) because thev involve Jess
singular kernels and faster convergent spectral integrals (or <eriesi. and are amenable
to the well-established method-of-moments {(MOM) solution procedures. originaliv
developed for arbitrarily shaped conducting scatterers in free space 31 41 5.

An MPIE was first used .n the present context by Mosig and Gardiol 6. who
applied it to analyze planar microstrip patch antennas of various shapes (see also (7.
[8]). An extension o this approach to non-planar conductors in lavered media was
later proposed by Michalski [1]. More recontly, Michalski and Zheng have developed
three alternative MPIE formulations [9]. referred to as Formulations A, B. and . and
applied Formulation C' to analyze scatterers and antennas of various shapes partially
buried in a material half-space [10]. as well as microstrip transmission lines having
conductors of arbitrary cross-section [11]. In the present paper. we extend the MPIE
approach of [9] to the case of uniaxial media. which have important applications
in modern microwave circuits [12], [13]. Although the approach presented here has
successfully been applied to a number of structures in layered media {11}, [14]. {15].
[16]. {17]. the details of the development have not yet appeared in the open literature.

The remainder of this paper is organized as follows. The problem statement ix
given in Section 2. In Section 3. we introduce the Fourier transform apparatus that
considerably simplifies the following development, and express the electric dvadic
Green’s function of the layered uniaxial medium in terms of the voltage and current
Green's functions of its transmission line network analog. For easy reference. the
transmission line Green's functions pertinent to a multi-lavered uniaxial medium are
given in the appendix. The main result is given in Section 1. where we develop and
discuss three distinct MPIE forms for non-planar conducting structures of arbitrary
shape embedded in the layered medium, using the dvadic Green’s function given in
Section 3 as the point of departure. We close. in Section 5. with the summary and

conclusions.




™)

2 Problem Statement

We discuss the MPIE approach in the context of the general problem illustrated i
Fig. 1. which shows an arbitrarilv shaped conducting object embedded in a lavered
medium and excited by (presumably known]j electric and magnetic currents, J* and

M, respectively. The material layers are uniform and of infinite extent along the »

T T T =2y

Figure 1: Arbitrarily shaped conducting object in a layered medinm.

n.d y axes, and may be uniaxially anisotropic. with the optic axis parallel to the :

~

axis. The nth layer is characterized by the permittivity and permeabilityv dyvadics
gnzétftn+££fzns y'_n:étﬂtn'f"ii#zn (I

where I is the unit dyadic transverse to z, and €, (s11) and €., (g2 ) denote, respec-
tively, the transverse and longitudinal dielectric {magnetic) constants relative to free
space. Observe that we distinguish dyvadics by double underlines and unit vectors by
carets. The free space permeability and permittivity will be denoted by ny and «.

respectively. For each layer, we also introduce its electric and magnetic anisotropy




ratios. v and vl respectively. given as

. Con flon
v,o= = ph= R 12

tin fn
The top and bottom layers may be of infinite extent along the = axis or  as illustrated
in Fig. l—may be shielded by ground planes having specified surface admittances
Y5 v+1 and Y. respectively, where the latter are infinite for perfect electric condie
tors.
The original problem of Fig. I may be replaced by its equivalent [1%. p. 106} shown

in Fig. 2. where the conducting object has been removed and its effect replaced by an

— 2222
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Figure 2: Problem equivalent to that in Fig. 1.

as yet unknown electric surface current with density Js, residing on a mathematical
surface S. Because this current exists in the absence of the conducting object. the

resulting electric field can be expressed as [19]. [20]

E(r) = /gE(rw) J(+')dr' (3)



(W3}

where the integration is over the region occupied by J - -the volume current density
associated with Js, r and 7’ denote the position vectors associated with the field and
source coordinates, respectively. and wiere G* is the electric dyadic Green's function
of the layered medium. This Green’s dvadic will be developed in Section 3.
Although the equivalent current in Fig. 2 is not known. we may easilv formulate
an EFIE that Js satisfies by imposing the impedance boundary condition [21. p. ¥

on the surface S of the object. Hence, upon using (3). we obtain
Zs [ Autr) Js(r)dS — [ Au(r): [ GE(rla) Jo(r')dS a5
s s s=
:[Amwﬂums (1]
where {A.} is a suitable set of vector weight functions defined over and tangential to

S. E' is the ‘incident’ electric field due to J' and M* radiating in the lavered medium

of Fig. 2. and where Zs is the surface impedance of the conducting object. given as

[

o:b. . WO -

Zs

in which o. denotes the conductivity and 6. the skin depth of the conductor. In the
case of strip-like structures, (3) is only applicable if 8. << f.. where ¢. is the strip

thickness. If this condition is violated the expression

Zs =

s (61
may be more appropriate [22]. In the above and throughout this paper. the e/=* time
variation is assumed.

The EFIE (4) can, in principle at least, be solved for Js by a MOM procedure.
but the severe singularity of its kernel as ©’ approaches r on S makes it unsuitable
for this purpose. A better approach is based on a mixed-potential representation of
E, given as

~ E(r) = A(r) + V&(r) (

-1
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in which the vector and scalar potentials. 4 and &, respectively. are expressed as

/G (r|r") "ydr' N

- /G"(rlr’)V'-J(r’)dr'

—/V'Go(rlr')-J(r')dr' (9}

where __G__A and G are the vector and scalar potential kernels. and where ¥’ operates
on the primed (source) coordinates. In view of the divergeuce theorem [23. p. 5031
the above two forms of ® are equivalent provided n- J vanishes on the surface 5 of
the object, where n2 is a unit vector normal to S, and—if J penetrates a boundary
between material layers, as illustrated in Fig. 2—provided (* is a continuous function
of =" across the interface. Upon using (7) in conjunction with (8} and (9). instead of
(3), in the impedance boundary condition on S, and applving the divergence theorem.
we arrive at the MPIE

75/ An(r)- Js(r d¢+/ A )-/Q‘“‘(rlr’)-Jg(r’)dS’d.S'

_/SV.A /G@ 1PV Is(r )ds*'dq—-/A ) E'r)dS  (10)

provided G? is a continuous function of : across any interface between dissimilar
material layers the conducting object penetrates. Observe that in view of the equation
of continuity, V-Js in the above is directly proportional to the surface charge density.
Comparing the EFIE (4) with the MPIE (10), we note that in the latter the differential
operator V'V’ has in effect been extracted from g-__E and transferred onto A, and Js.
As a consequence, the kernels QA and G° appearing in (10) are less singular than
GF, and the Sommerfeld-type integrals that arise converge more rapidly.

The form of (10) is not unique and leads to different MPIE formulations. depending
on the choice of _QA and G°. In Section 4, we develop three distinct MPIFE forms that

have been found useful in MOM analyses of the radiation. scattering. and guidance of

electromagnetic fields by arbitrarily shaped conducting structures in layered media.
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The development is carried out in the spectral domain and it proceeds from the
spectral electric dyadic Green's function of the layered medinm. developed i the

next sectior.

3 Preliminaries

Following Felsen and Marcuvitz [24. p. 188]. we view the lavered medium in Fig. 2
as a waveguide along the : axis and expand the electromagnetic fields and currents
in terms of the waveguide modes. Because the waveguide cross section is of iufinite
extent along the x and y coordinates, the eigenvalues corresponding to the latter.
k, and k,, respectively, form continuous spectra on the real axis. (‘onsequently, the
modal expansions may be expressed as the familiar double Fourier transforms. which

prompts us to introduce the Fourier transform pair

+20 +2C
Fifteny=fik) = [ [ fioyetop icay (i)
5 1 +x X &
FHfk)) = fip) = ] _/ fiky)e=*P g, di, {12)

where k, =&k, +yk, is the spectral domain counterpart of p=azr+yy. If we now write
E(r) as E(p;z), its Fourier transform may be expressed as E(k,: 1. and similarly
for the other field quantities. We also note that in the spectral domain the operator
nabla becomes V = —jk,+20/9z, which suggests that we introduce a rotated spectral
domain coordinate system based on k,, as illustrated in Fig. 3. where (cf. [25]. [26].
27], [28])

. zxk , ; "
V= = k= kT4 k2 (13)

v

uw =

& Iba"

When the Fourier-transformed Maxwell’s equations are projected on this coordinate
system, 1t is found that the spectral domain electromagnetic field may efficiently and
elegantly be expressed in terms of the voltages and currents on two transmission lines

along the z axis. with the propagation wavenumbers and characteristic admittances

-1
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Figure 3: Rotated spectral comain coordinate svstem.

given as

o ; } N e 1 L’i)(z ) N

k::,/k‘é/ttci-—l\}f/l/'. ¥ —2(—2;]:[{ ith
. - 1 k7

K= ke —k2 vk YR = s (15

o A'r)llt

and

o

respectively, where kg = w /oo is the wavenumber and no = \/po/ey the intrinsic
impedance of free space. Observe that at this stage of the development. the per-
meability and permittivity (and thus also the anisotropyv ratios) of the medinum may
vary arbitrarily with z and are not necessarily restricted to be piecewise-constant. as
is the case in Fig. 2. The voltage V° and current [¢ on the line with the propaga-
tion wavenumber and characteristic admittance given in (14) specifv the transverse-
magnetic (TM) partial field, while the voltage V" and current I* on the line with
the propagation wavenumber and characteristic admittance given in {13} specifv the
transverse-electric (TE) part of the field. For the following development. it will be
convenient to also introduce transmission line Green's functions. which represent the
voltage or current excited by a urit-strength voltage or current point source. Hence.
let Vi(z|z') and I?(z]2’), where the superscript p stands for € or h. denote the voltage
and current, respectively at a point : due to a 1A current source located at =" on

the corresponding transmission line (cf. [27], [29]). It then follows that these Greea's




functions are governed by the coupled equations

R VA M it
SV om e —RY PV sy s 17

where ¢(z=="1 is the Dirac delta. Similarlv. let Vars 2 band 1502 27 denote 1he voltave
and current. respectivelv.at = due to a [V voltage <ource at 70 s then fonnad that
these Green's nnctions satisty equations dual to 116) (1710 which are obtained f1am
the latter by making the substitations VF — /50 [7 o V00 28 ¥ and Y0 -w 47
From their governing equations. it can also be shown that the four trapsiiission hue

izt

Green's functions possess the svimmetry and reciprocity properties 24 14y

Once the transmission line Green's functions are determined, the voltage and current
at any point on the transmission line, excited by an arbitrary, distributed voltage
v? and current /7 may be expressed in terms of the superposition relations 1o, 730.

p. 63]. [24. p. 193])
VP = /V,r'(:f:') P2V d + / VP iz s ds (104

[P(z) = /[f(:h’)f“’(:')d:' + /[f[:i:')z"ﬁ:'i«f:' 120

In view of the uniformity of the medium of Fig. 2 along the r and y axes. the

dyadic Green's function in (3) possesses a translational svmmetry with respect to

the transverse coordinates. Consequently, we mav write GE(rir )y =G ip—p' 220
where GE(p; z1z') may be given as

GF(p:zl=) = F{QI(€) G (k,: 22" QiéH} 21

= E . . A . .
Here. G is the spectral domain counterpart of GE. expressed in the rotated coordi-




nate svstem of Fig. 3. and the dyadic operator

(ux+vylcosé + (uy—vxisiné+ 2z (2

fl@

and its transpose. QU (£). are emploved to directiy transform GY from the rotaed
spectral domain coordinate system to the space domain. Upon using the <superposi
tion relations {19)-{20) in the Fourier-transformed Maxwell's equations. we find 1t

E , . T . .
G" may be expressed in terms of the voltage and current transmission lne Green's

functions as

_ gf‘(kp::!:') = uu V (k) + o9 L"‘(kp: sy —uz ;’60 = V(k2 s
He
i ok, [0y 2|2) + 33 (’/0/\2)- ik =i o ) BT
% kocs ko €€ Jhot’

where the primed and unprimed parameters are evaluated at =" and =, respectively

a convention that will be in effect throughout this paper. unless the laver index is
explicitly stated. Observe that in the above we explicitly indicate the dependence
of the transmission line Green's functions on the transverse spectral wavennmber &,.
The isotropic medium form of ___G:E was previously given by Kastner et al. [27].

In view of the fact that no assumptions have so far been made regarding the de-
pendence of the media parameters on :. the spectral dyadic Green's function given
in (23) is valid, in particular, for the layered medium of Fig. 2. where the perme-
ability and permittivity are piecewise-constant. The corresponding transmission line
network is illustrated in Fig. 4. Observe that the original vector problem has thus
been reduced to a much simpler equivalent network problem. in which the individ-
ual material layers are viewed as uniform transmission line sections., where the nth
section has the propagation constant &% and characteristic admittance Y. This net-
work analog actually comprises two networks—one associated with the TM and the
other with the TE partial fields—which have identical configurations. but differ in the
characteristic admittances and propagation constants. In the case of an unshielded

structure, where the top (or bottom) layer is of infinite extent along the z axis, the

10
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Figure 4: Transmussion line network analog of the lavered medinm,

corresponding transmission line section in the network analog of Fig. 1 also extends
to infinity, where it is terminated into a matched load. The voltage and current
Green’s functions for the network of Fig. 4 are easily found for any number of lavers.
as discussed in the appendix.

We note that in view of (14)-(13), the transmission line Gireen’s functions appear-
ing in {23) depend on the spectral variables &, and k, exclusively through k,. As a
consequence, when the double spectral integrations in (21) are performed in the polar
system (k,,£) illustrated in Fig. 3. the £-integrals can be evaluated in closed form.
More specifically, we find that

cOos

F {Eé’énﬁf( )} (=) Mo S fhET) . n=012 20

where we have introduced the notation

Sa{f(k)} / dk, F(k, )k, (yp) (25)
In the above, (p, ) are the configuration space polar coordinates and .J, is the Bessel
function of order n. In this fashion. the space domain dyadic GF :z|z") may be
expressed in terms of the Sommerfeld-type integrals (25). To obtain G (p— ')

required in (3), we replace ¢ and p in (24)-(25) by v and o, respectively, where

-y , o o
O“arctan(r_ ,) . g:\/(x—‘zr’)z—%-(y—y )2 (26)

11




Since only G will be needed in the following development. in the interest of brevity

we do not list the explicit form of its space domain counterpart.

4 Development of the MPIE Formulations

Because (3) has the form of a convolution in the transverse plane. its Fourter transform
becomes

E(kﬁ::) = /gg(kp::,i:')-j(k‘_‘::')d:’ (27

. S E . . A .. ) —
with G~ given in (23). Similarly. the spectral domain counterpart of i 7} is fonnd as

—-E(k,,;:)=A(kp::‘+V<fJ(kp;:) (28)

in which
A(kyz) = | Gk zis) Tk, o) de (29)
b(k,: ) = —/V'G‘C’(k,, 2|2 J(ky: ') d=" (30)

_ gE(kp; z|2) = __G:‘4(kp;:|:') - VV Gk, =] (31)

which will serve as the point of departure in the development of g" and G® from g[‘
In what follows, we continue to use the rotated spectral domain coordinate syvstem of
Fig. 3. in which four of the nine components of QE are zero. as 1s evident from (23).
This and the fact that V and ¥V are orthogonal to the v axis greatly simplifies the
development. Hence, we immediately find from (31) and (23) that

G =G =G4 =G4 =0 (32)

Iy uz

and that the nonzero elements of __Q_A and G* are related by

-Gfu — (A _k‘;z(;-o' (33)

m

12
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- ('[ = ("‘:t i3

L aGe
-GE o= G+ JA‘:,a"T)'"'," BAY

[0

, G
—Gh = G-k 3
GE = - Gl (37
= Tz '

For notational simplicity, we omit in the above and in some equations that follow
the arguments of the spectral domain kernels. Observe that the svstem (33} (37 1s

underdetermined. because there are six unknowns. viz. the five components of
Er = aalCt 4560 +azCl L 20 4 230 N
G =uuG), +voG), +uzl, + zull, + 220 (3%)

and G°. and only five equations. Consequently. we are free to impose an additional
constraint on (38)—for instance, we may choose one of the elements of g‘ to be zero.
Note. however, that there is no flexibility in choosing (. In fact. it immediately
follows from (34) and (23) that

Gk =]z = VR k: <)) (3%9)

Below. we introduce three different constraints on the remaining four elements of :;QA
and explore the resulting MPIE formulations. which will be referred to as Formula-

vicns A. B, and C. following the terminology introduced in [9].

4.1 Formulation A

To arrive at Formulation A, we set

G2 (kyz|z) =0 (10)




[t then follows from (36) that
D0 n
L 1
iz A‘“(,
which. in view of (16). leads to
. Vogk, iz
GOh 2 = ATAL/AIRE (12

4 i B
vkt

provided the field point is within a homogencous material laver. Upon using the

above in (33). we arrive at

.. ISITI ‘
0 kyozlz') = SRR Y I (13
.m( ) (Ag)z 1 ( 12 !
Similarly. from (42) and {35). we find
. k, . ok, OV
o= - P2y - L Tl (1)
3 koe!, "V pe(ke)yt 02
which, in view of (16) and (18), may be reduced to
. 2\ A VE(k, 2]
G2 (ke 212") = konope, | 1 — ALl AR (45}
ue (Kot 2127) = komopy ( we ) T vk (45
Finally, from (37) and (42), we obtain
2 -
] r]Okp 16: Ti\.’ N ! l ()l" : 4
GE = Lop () —— (16)
* ( ko ) €€, Jko, ( )+ ue(/;ij)‘Z Az E
which, upon using (16), (18), and the equation dual to (17}, simplifies to
=y ‘: o ’ —
G2 (ky; z]2") :7]3%—‘*11,()&})::[: ) (17)

We have thus determined all elements of __G:A in (38). as well as the corresponding (.

To obtain the space domain counterpart of _G_:A, we subject the latter to the inverse

14




Fourier transform in the manner of (21} and use (21}, with the resnlt

, | S P .
__G:"(pzziz)z ;;, 0{\f(k,,::§:)+ —(%‘%t—){r"e (/\;,,::j:)}

| S _) L e Vock,: ziz) bppee, Aotk o2t
+3[(zm—yy)cos_,:+(z:y+y:c)sm_;]bg . pT S

2 p g

. . . . , L€y Vioik, oty
—(®zcosy¢ + yYyzsin ;)}A’Uno;z,(l - t—fj) S;{mm’-’—-——‘;——

pyel, vk

[ oo 2/'1; e/t ’ R
Tzzqoz—So{Ir(isp::}:)} CIN

Similarly. the space domain counterpart of (:7 is readily found as
{19}

Finally. in order to obtain g"(p——p': 2|z} and G®(p—p’: z|Z") required in the MPIE
(10), we make the replacements o — ¢ and p — o in (43) and {49). with o and o
given in (26). Observe that when the source and field points are within the same
material layer, Q‘ becomes a diagonal dyadic and the rz and y: components of
gA vanish. thus resulting in a significant simplification of this MPIE formulation.
Note. however, that G in this formulation is a discontinuous function of z across any

interface between dissimilar material layers.

4.2 Formulation B

To obtain Formulation B, we set

A (hizls) =0 (50)
It then follows from (35) that )
G*® .
d, = M Ve (51)
z! k()( )




i6
which, in view of (16). leads to
(;"’(Kj,); D)= T 1527

provided the source point is within a homogeneous material layver. Upon nsing the

above in (33). we arrive at

Goulkyizls) = Tf? NIREES 53
Similarly. from (52) and (36). we find
R U 3 SO L A (51)
*‘“ koe: 1 we(ke)E Oz “
which, in view of (16) and (18). mav be reduced to
G2 (ko 212) = komop (1 -~ iij) kpf}’i;(':‘:‘zls)i:l) {53)

Finally, from (52) and (37), we obtain

. A (A I L
A= (M%) ey 10 gy — 56
& (ko T A TR o0

which, upon using (16), (18). and the equation dual to (17). simplifies to

= A . :, .
The elements of G”, as well as the corresponding (;°. have thus been determined.
| heir space domain counterparts are found in the came manner as in Formulation A.
and take the form

L2
kopies

()P Vi (ky: :|:')}

G*(p:zl2') = =L So{“:vh(kp: ) +

16




17

l P VRk s it Vi, =02
+ 3-{(1:2: yy)cos2o+{zy+yx)sinlye .)_,{ : % = [A‘;,,,,:I i “ }
. . .. . N L TR
—(2xcos © + zysin y’)]"()’)u#t(l - &’('—) O ’ii*‘———l
e l/f"A.:I‘)a
I
+z zr)é—isg{[’ 2|2} (o8
¢
and . /
‘ Vo(k, =120
iz R I A o ! 14 H Py
G?(p:z]d) = b(,){myu(k?)z } {94

The remark following (19) also applies in the present case. Observe that when the
source and field points are within the same material laver. g‘ becomes a diagonal
dyvadic and the zr and :y components of g"‘ vanish. thus resulting in a significant
simplification of this MPIE formulation. Note, however, that (;” in this formulation is

a discontinuous function of =’ across any interface between dissimilar material lavers.

4.3 Formulation C

To arrive at Formulation C, we set

G2 (kyiz2) = GA (ke z|=) = V(212 (60)

where we have used (39). It then follows from (33) that

! 1 . ? e ! N
G (ki z1=") = VM (ke 2l2') = Vi (ki 212) (61)

Upon using the above in {35), we obtain

“eA _ r]()kp e __ d ( h v'ﬁ) { {0)
e Al =l LA (62)

which, in view of (16) and (18). may be reduced to

~ k ' , / re / OR
i U 212) = = Ak 212') — V (k211 (63)
»

17
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Similarly. upon using (61) in (36). we obtain
- k, .
o=~y L (v !
U }\,0(: t ;‘p (): 4 t thd !
which. in view of (16). may be reduced to
“e 4 IR A‘UUO[“ h 2 » vse -
G k=) = - [Pk 2]’y = Ik, 2 )j 631
P

Finally, from (61} and (37). we obtain

2 7
3 TIOkp If Mo ' I a0 ( ‘h ") g
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which, upon using (16}, (18), and the equation dual to (17). may be expressed as
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The elements of G*, as well as the corresponding G2. have thus been determined.
= p g

Their space domain counterparts are found in the same manner as in Formulation A.

and take the form
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The remark following (49) also applies in the present case. Observe that (/7 in this
formulation is a continuous function of both » and =’ across anyv interface hetween

dissimilar material layers.

5 Summary and Conclusions

We present a systematic derivation of three distinct mixed-potential integral equation
(MPIE) formulations, referred to as Formulations A. B, and C, for arbitrarily shaped
non-planar conducting objects embedded in a medium comprising anv number of
planar material layers of infinite lateral extent, which may be uniaxially anisotropic.
The development is carried out in the spectral domain, which effectively reduces the
original vector problem to a much simpler, scalar transmission line problem. The
spectral domain vector and scalar potential kernels of the three formulations have
explicitly been expressed in terms of the voltage and current Green's functions of the
transmission line network analog of the layered medium. It is found that the three
MPIE formulations are of similar complexity for arbitrarily shaped structures. but
for strictly planar microstrip geometries, Formulation C is the simplest and thus the
most efficient one. This formulation is also recommended when the conductor pene-
trates an interface between dissimilar material layers, in which case Formulations A
and B are not applicable, unless the MPIE (10) i1s augmented by additional contour
integral terms, as discussed by Michalski and Zheng [9], [10]. However. when the con-
ducting structure is confined to a single material layer, Formulations A and B become
attractive, because in that case two off-diagonal components of their vector potential
kernels vanish, which results in considerable savings in the computational effort. The
reader is referred to [9], [10] for a more detailed discussion of the properties of the
three formulations.

The advantage of the MPIE approach presented here is that it involves kernels
which are less singular and comprise faster converging spectral integrals than the ker-
nels encountered in the standard electric field integral equation (EFIE) formulation.
Although the MPIE is more complex than the EFIE, it is amenable to well-established

numerical solution procedures originally developed for scatterers of arbitrary shape
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in homogeneous media [], [3]. The MPIE approach may not be the most efficient
one to use in the case of planar structures with simple. regular shapes. but it offers
the flexibility and accuracy that make it well suited for the analvsis of nonplanar
and/or irregularly shaped microstrip transmission lines and antennas frequently en-
countered in modern microwave and mi''imeter-wave systems. The MPIE 15 also a
promising candidate for use in hybrid formulations. which combine differential and

integral equation methods [31]. [32].

A Transmission Line Green’s Functions

Consider a transmission line section corresponding to the nth material layer of Fig. 2.
characterized by the parameters (1). Let this line section comprise a unit-strength
current source ¢ at z’, as illustrated in Fig. 5. It then follows that the voltage V" and
current /7 at any point z within this section obey the equations (16)-{17). in which

k? = kP and Y? =YP. From these equations. we find that V;” may be expressed in
z In n H p
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Figure 5: Transmission line section comprising a unit-strength current source.
the traveling-wave form (cf. [24, p. 213])
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where ¢ = min(z, 2}, 25 = max(z.2'). z is an arbitrary reference point wirhin the
nth section (which is usually set to =, or ... whichever 1s more convenient ). and
= = 0 .. . . .

[.(z0) and TI,(z0) are the reflection coetlicients "looking to the left” and “looking to

the right.” respectively. at z5. By means of the translation formuia

&8
1l

*n( :U) 63: 2K onlz—zg)

=

(=)=

n—i‘l?

where the upper and lower signs correspond to the right and left arrows. respec-
tively, these reflection coeflicients can be expressed in terms of the respective termi-
nal reflection coefficients I}, and T,. which are related to the corresponding terminal

) = - ..
admittances Y, and Y, (see Fig. 5) as

= =
= Y;z_ }n 2 . 1- n -
Fnz —'“‘“‘—_(__:f, }n:‘ }n = (32?
}'n+ Yn 1+ Fn

For a transmission line section of a finite length d,,. a particularly convenient form of

(70) is

— . P = _ an . Y
‘/( | I) e“kalz—z'l 1+ Fn e_JZszl("< =n ] [1+ rn € ,12}\:"(~v1+1 -))2 " ’-'3)
2|z ) = - = -
' 2}’71 ]_... E—F; e“JZkzndn

which is obtained by letting zo=1z, and using (71).

The remaining transmission line Green's functions can be derived from (73).
Hence, [,(z|z"), which is dual to V;(z]z’), is obtained when Y, is replaced by Z,
in (73) (which causes the reflection coeflicients to change signs), /;(z|z") follows from
(16) and (73), and V,(z|2’) may then be obtained from the reciprocity relation given
in {18).

The voltage and current on the nth transmission line section that is source-free
satisfy (16)-(17) with the delta function absent. From these equations. the voltage

at any point z within the line section may be expressed in terms of the voltage 17{ )

[ o™}
—




across one of its terminal pairs. The result is

V() = Vi) —= I+

1+ I.‘,} f‘}-)k:ra‘[vw

ke T "! i
| t
4

where zp =1z, or zp= 2,4 (see Fig. 5j. depending on whether the <ource is located 1o
the left or to the right. respectively. of the line section. and where the npper lowers
arrow corresponds to = > 25 (= < zp). We have omitted the subseript of Vi 1745,
because the latter applies irrespective of the nature of the source. and dropped = from
its argument, because (74) only implicitly depends on the source location. which i
outside the nth line section. The current /(=) corresponding to (74) may be obtained
by substituting the latter into (16).

Finally, we note that (71)-(72) are easily implemented in a recursive computer
routine to determine the leftward- and rightward-looking reflection coeflicients needed
in (73) and (74). The computations proceed from the outward-looking reflection co-
efficients in the top and bottom transmission line sections (see Fig. 1]. where thev
vanish for unshielded structures or otherwise are easily determined. provided the sur-
face admittances Ys; and Ys 4 are known. Observe that the exponentia, functions
encountered in (71), (73), and (74) have nonincreasing magnitudes, so there is no
danger of overflow. When the nth transmission line section extends to positive (neg-
ative) infinity along the z axis. the reflection coefficient —I‘Z (T.) is set to zero in (T3}
and (74).
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Mixed-Potential Iintegral Equation (MPIE)
Formulation for Non-Planar Microstrip
Structures of Arbitrary Shape in
Multi-Layered Uniaxial Media

Krzysztof A. Michalski

Electromagnetics & Microewave Laboratory, Department of Electrical
Engineering. Texas A&M University, College Station, Texas 77843

Abstract

A straightforward derivation is presented of three distinct mixed-potential integral
equations (MPIEs) that are well-suited for the analysis of arbitrarily shaped. planar
or non-planar microstrip structures in multi-layered, planar. uniaxially anisotropic

media of infinite lateral extent.

1 Introduction

The integral equation-method of moments (IE-MOM) approach. implemented either
in the spectrum or space domain, continues to be the method of choice for the analvsis
of open microstrip structures (see [1] and [2] for recent examples of the application of
these techniques). The spectral and space domain IE formulations, both being based
on the rigorous Green’s function of the background medium. are formally identical.
and only differ in the order in which the integrals that arise are performed. When
applied to planar geometries, the spectral domain approach (SDA) results in very
simple expressions for the MOM matrix elements, which, however, comprise slowly
convergent double spectral integrals. Consequently, to make this technique prar tical.
a considerable effort is required to accelerate these integrals, and the initial simplicity
of the formulation is lost in the process [3], [4], [5]. Although the SDA can in princi-
ple be extended to non-planar conductors. the space domain integrals that must be

analytically evaluated involve in that case the layered medium Green's function. and




the development is tedious and results in several spectral intesrals for cach matris
element, thus further complicating the acceleration procedure.

The space domain IE is usually first transformed into a mixed-potential form. in
which the electric field is expressed in terms of the vector and scalar potentials. before
it is subjected to the MOM [6]. The resulting [E. which is often referred to in the liver-
ature as the mixed-potential integral equation (MPIE) [T}, [X]. has a more complicated
form than its spectral domain counterpart. but has many advantages. making it very
attractive, particularly for non-planar and arbitrarily shaped microstrip struetnres,
First, the MPIE potential kernels are less singular when the source and observation
points coincide ca the surface of the object than the dyadic kernel of the standard
electric field integral equation (EFIE) (in the SDA implementation of the EFIE. the
severe kernel singularity of the latter is manifested by a divergent behavior of the don-
ble spectral integrals). Second. the MPIE is amenable to well-established numerical
solution procedures [6], [9]. [10]. [11] and—in contrast to the SDA —it onlv requires
single spectral integrals of the Sommerfeld type [12. p. 210]. which are independent
of the testing and basis functions employved in the MOM procedure. Third. these
Sommerfeld integrals are amenable to various approximation methods. such as the
interpolation and table look-up scheme [13] (see also [14], [13}). or the complex-image
representation [16], [17]. which drastically reduce the computational effort.

In a layered medium, different MPIE formulations are possible. as a result of the
non-uniqueness of the potentials. There are at least three possible useful choices of the
magnetic vector potential (or electric Hertz vector) associated with a horizontal time-
harmonic dipole [18], which also lead to different scalar potentials. Of the three vector
potential choices, the classical Sommerfeld's form [12. p. 258] (termed “traditional’
in [19]) has been and remains the most popular and useful. Another form. termed
‘alternative,” has been shown to have some advantages over the traditional one in
the MPIE formulation [19]. As was first pointed out by Mosig and Gardiol [13].
the scalar potential kernel of the MPIE may be interpreted as the potential of a
single point charge associated with a time-harmonic dipole. In a layered medium.
the potentials associated with the horizontal and vertical dipoles are different [19].

which poses a difficulty in the case of arbitrarily shaped. non-planar objects. because




only one scalar potential appears in the standard form of the MPIE. A method to
overcome this difficulty was first proposed by Michalski [T]. The two forms of the
vector potential (traditional and alternative) and two scalar potentials thorizontal
and vertical) lead to three distinct MPIE formulations, which were first developed
and explored in detail by Michalski and Zheng [20]. [21].

The MPIE approach was first applied to planar microstrip structures with isotropic
substrates by Mosig and Gardiol [13]. Their formulation was later adopted by others
[22], [23]. [24]. [253]. [26]. [27] and was extended to multi-layered media [11]. [15] and
to electrically uniaxial media [28]. One of the MPIE forms developed in {201, referred
to as Formulation C {which corresponds to the “traditional formulation” of [19]}. has
recently been emploved to analvze coax-fed microstrip patch antennas of arbitrary
shape [29]. [30]. [31]. as well as microstrip transmission lines of arbitrary cross-section
[32]. [33]. This formulation, which is based on the Sommerfeld’s form of the vector
potential and the scalar potential associated with a horizonta: dipole. reduces for
planar microstrip structures with isotropic substrates to that originally developed by
Mosig and Gardiol [13] (see also [15]. [14]). A modification of Formulation (' was
adopted by Montgomery and Wilton [34] (see also [33]) for the analysis of arbitrary
conducting periodic structures embedded in lavered media. For microstrip geometries
that only comprise planar and vertical components, such as coax probe-fed microstrip
patch antennas. hvbrid MPIE formulations have been developed. which utilize two
scalar potential kernels (associated with the horizontal and vertical dipoles) and. as a
result. require a point charge at the probe-to-patch junction [36]. [37]. [33]. [39]. [10].
A still different MPIE formulation has recently been introduced by Vandenbosch and
Van de Capelle [41].

The purpose of this paper is to present a new. straightforward development of
three distinct MPIE formulations (corresponding to Formulations A. B. and (" of [20]}.
that are suitable for arbitrarily shaped. non-planar. microstrip structures embedded

multi-layered, planar, uniaxial media of infinite lateral extent.
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2 Preliminaries

Consider a medium comprising .V planar. uniaxially anisotropic layvers of infinite lat-

eral extent, as illustrated in Fig. 1. The nth layer is characterized by the permittivity

Figure 1: Medium comprising .V planar. uniaxially anisotropic lavers.

and permeability dyadics. €, and p,. of the form

€n zitftn+££fzn~ En‘:itﬂtn +‘é£/‘:n ih

where € {fen) and €., (p.n) denote. respectively, the transverse and longitudinal
dielectric (magnetic) constants relative to free space. and I, is the unit dyadic trans-
verse to z. Observe that we distinguish dvadics by double underlines and unit vectors
by carets. The free space permeability and permittivity will be denoted by ;i and «q.
respectively. For each layer, we also introduce its electric and magnetic anisotropy

ratios, v¢ and v’ respectively, given as

€rn s X

e 2 h mn .

Vn T e, Vn = {
€tn Hin
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The top and bottom layers may be of infinite extent along the = axis o as ilustra:
ted in Fig. 1 —may be shielded by ground planes having specitied surface admittan-
ces Yonpr and Yy, respectively., where the latter are mfinite for perfect electric
conductors (PEC).

Let an arbitrarily shaped PEC object. whose surface S may he upen or closed. he
embedded in the layered medium of Fig. 1. Furthermore. let E* denote the impressed
(primary) time-harmonic (the ¢/*' time convention is adopted herej electric tield that
exists in the lavered medium in the absence of the object. With the object present.
this field excites on 5 the surface current Js. which is the source of the scattered

{secondarv) electric field. The latter may be expressed as

= [ GFlo=pssls) - Foir )y
= (GF: Js)g (3)

where gE is the dvadic Green's function of the layered medium. r and p denote.
respectively, the position vector and its projection on the ry plane. and where primes
are used to distinguish source coordinates. For later convenience. we have introduced
in (3) the shorthand notation (:) for an integral of a product of two functions sep-
arated by the comma. The dot over the comma signifies a "dot product’ of vector
arguments and the prime over } indicates that the integration is over the primed
(source) coordinates, while the subscript 5 designates the domain of integration.
The dyadic Green's function in {3) may be expressed as the inverse Vector Fourier

Transform (cf. [42]) of its spectral domain counterpart. g‘” of the form

GF(p—p'izld) = f“{QT(f) G (] g_(a}

l

QT GF(ky: 2|2} - QUE) e M PP ke dk, ()

8\§

Here. k, and k, are the spectral domain counterparts of r and y. respectively, and
k, = zk,+yk, is the radial wave vector. Based on k,. we introduce the rotated spectral

domain coordinate system illustrated in Fig. 2, where the unit vectors @ and v are
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Figure 2: Rotated spectral domain coordinate system.

given as (cf. [43], {44], [45], [46])
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In (4), the dyadic operator

ZQ__(f):(di+6g})cos£+(ﬁg}—éi)sin{+ii (6)

and its transpose, _Q_T(f), are employed to directly transform gb from the rotated
spectrum space toThe configuration space. Upon projecting Fourier-transformed
Maxwell’s equations on the rotated coordinates of Fig. 2, we find that these equations
split into two independent sets comprising, respectively. fields that are transverse-
magnetic (TM) and transverse-electric (TE) to z. Furthermore. it is found that
these partial fields may efficiently be expressed in terms of the voltages and currents
on two transmission lines along the = axis, with the propagation wavenumbers and

characteristic admittances given as

k= R —k2fve . ¥E

1 _ nlt'()(g

ze Nok

il

6




33

and

i

M= ke, — k2 ok yh _L_ k2 .
2 = kg — k2 vt Zr = (N

711)’\'0#!
respectively. where ky = w /o€y is the wavenumber and ny = /po /ey the intrinsic

impedance of free space. Observe that at this stage of the development. the perme-
ability and permittivity (and thus also the anisotropy ratios) of the medium mayv vary
arbitrarily with = and are not necessarily restricted to be piecewise-constant. as is
the case in Fig. 1. In the above we have adopted * .e convention that the quantities
associated with the TM and TE transmission line. .ce distinguished by superscripts
e and h, respectively. For the following development. it will be convenient to also
introduce transmission line Green’s functions, which represent the voltage or current
excited by a unit-strength voltage or current point source. Hence. let VP(z|z') and
I?(z]2’), where the superscript p stands for e or k., denote the voltage and current.
respectively, at a point = due to a 1 A current source located at =’ on the correspond-
ing transmission line (cf. [47], [46]). These Green's functions are governed by the

coupled equations

Lypale) = -2 P 0
dz

d s

D1y = Y7V + 62 (10)

where 6(z—2) is the Dirac delta. Similarly, let V?(z|z') and I?(z|z') denote the voltage
and current, respectively, at z due to a 1 V voltage source at z’. It then follows that
these Green’s functions satisfy equations dual to (9)-(10). which are obtained from
the latter by making the substitutions VP — I7, I? - VP 7P - Y? and Y? — Z7.
From their governing equations, it can also be shown that the four transmission line
Green’s functions possess the symmetry and reciprocity properties [43. p. 194]
VP(z|e") = VE('2), I0(2]") = ("), VP(sI) = = IP(<)) (1)
In the rotated coordinate system of Fig. 2, the spectral domain dyadic _Q_E in (4)

may be expressed in terms of the transmission line Green's functions as (see also
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Kastner et al. [47])

— GFlhyz|2) = wn Ve (ki 2]) + 99 VA (k2 ]2)

. . ok , ok, .,
~ iy % [(hy: =]y —uz o : Votkzish
0Cs XVl
RN A RO
+ 22 ok z( pr i ) + .’/U {‘(:—:," (12}
ko €€, Jkyel

where § is the Dirac delta function. and where the primed and unprimed media pa-

rameters are evaluated at 2z’

and z, respectively-—a convention that will also be in
effect throughout the remainder of this paper. unless the laver index is explicitly
stated. Observe that in the above we explicitly indicate the dependence of the trans-
mission line Green’s functions on the transverse spectral wavenumber k,. Since no
assumptions have so far been made regarding the dependence of the media parame-
ters on z, the spectral dyadic Green's function given in (12) is valid. in particular. for
the layered medium of Fig. 1. where the permeability and permittivity are piecewise-
constant. The voltage and current Green's functions of its transmission line network
analog are easily found for any number of layers. as discussed in the appendix.

We note that the transmission line Green's functions appearing in (12} depend on
the spectral variables k, and k, exclusively through k,. As a consequence. when the

double spectral integration in (1) is performed in the polar system (4;.£) shown in

Fig. 2., the ¢-integrals can be evaluated in closed form. More specifically. we find that
~-1) sin _ \n osin VT — . !
F {COS nﬁf(kp)} = (=J)" oos m}Sn{f(kp)kp } n=0.1.2 (13)

where we have introduced the notation

1 20
Sl dk)} = 5= [ ks Jk kT Julhyo) (1)
In the above,
¥ = arctan ('j_-?/_,) , o= \/(Jf—r')2+(y—y’)'~’ (15)
r—r




and J, is the Bessel function of order n. In this fashion. the space domain dvadic G
may be expressed in terms of the Sommerfeld-type integrals (11). Its explicit form is
easily found with the help of (4) and (13). but will not be required in the following
development, and is not listed here in the interest of brevity.

With G determined, the electric field scattered by the conducting ohject mayv
be found from (3). provided the surface current Js is given. When the latter is not
known a priori as is usually the case. we may use (3) to formulate an 1E for Js by
enforcing the condition that the total tangential electric field must vanish at 5. As
result, we obtain the EFIE

- <Ak3 <§E: J; ),>>\ = (Ag: Ei)s (16}

where {Ax} is a suitably chosen complete set of linearly independent vector weight
(testing) functions defined over and tangential to S. This EFIE. however. is not
suitable for a direct application of the MOM [6] because the dyadic kernel G* exhibits
a severe singularity when the source and observation points coincide on S and the
Sommerfeld-type integrals that arise are slowly convergent.

When the spectral representation of __Q’:E given in (4) is substituted into {16) and
the order of the spectral and space integrals reversed. the latter may be evaluated
analytically, provided the testing functions {A} and the basis functions used to
represent Jg are Fourier-transformable in closed form. This procedure leads to the
previously mentioned SDA, which has been popular in the analysis of planar mi-
crostrip structures. Unfortunately, the doubic spectral integrals associated with this
approach suffer from an extremely slow convergence and—except for simple. regular

the methiod is inethcient.

geometries, for which the MOM matrix has a small size
The difficulties encountered when the MOM is applied to the EFIE may be alle-

viated if the secondary electric field (3) is expressed as
— E(r) = (G Y5 + V(G V' L (17

in which ¥’ operates on source coordinates. and where G and (¢° are referred

to, respectively, as the vector and scalar potential kernels. Because both potentials
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appear in {17). the latter is termed the mixed-potential representation of the electrie
field {7]. [49]. Upon using (17). instead of (3). in the procedure that led to the LFIE

(16), and applying a Gauss' theorem [30. p. 503}, we arrive at the MPIE
A ] ‘ o ; 0"
<1’1,‘¢l<§ J§>,q>\ "<V.’1A<(r.v J‘)S/\L = (_)xl.’;:E i RN

provided 7% is a continuous function of = across any interface between dissimilar
material lavers the object penetrates. Comparing the EFIE (16) with the MPIE (1.,
we note that in the latter the differential operator ¥V’ has in effect heen extracted
from G* and transterred onto Ay and Js [35]. As a cousequence. the kernels G and
(:* appearing in the MPIE (18) are less singular (or “less discontinuous™ [30. p. 1951
than =G__E. and the resulting Sommerfeld-type integrals converge more rapidly. Clearly.
for this equation to be applicable, the testing functions and the basis functions used
to represent Js must be at least once differentiable—a requirement tnat can casily be
accommodated [10]. Finally. we note that (18) may readily be extended to imperfect
conductors via the surface impedance concept [3]. {33].

In the next section, we employ the spectral dvadic gE given n (12} as the point
of departure in the development of the vector and scalar potential kernels. G* and
G®, respectively, associated with three distinct MPIE formulations. for multi-lavered.

planar, uniaxial media of infinite lateral extent.

3 MPIE Development

The development is carried out in the spectral domain and it proceeds from the
spectral electric dyadic Green's function _Q_E given in (12). First. we add to and
subtract from (12) the term @@ V}*(,: 2|} and recognize that @u+v% = L. Next,
we observe that V= —jku., where V, is the spectral domain counterpart of ¥, —the
transverse (to =) part of the operator nabla. and that <7,’=j1.;,11. As a results of these
steps, we obtain

; ! h ' S R B I 0 I AR R g
= Gk o)) = LVl - v | e i

2l

10
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Next, we use the properties of the transmission hine Green's functions 1 coninna oy

with the identity

17 15 BT A

oy’ - y’ —y - - N ?
2 -2 - RN A R -
' o o bz
to express G in the form
~ R ! - ey "o.r'~, '
- gqug::':'i =Gk o OV Gk (2
which in the space domain becomes
~GElp—pi:y = Glp-pisid )V = VW (Fip-plisit (221

Upon using the above in (3) and appealing to the divergence theorem 50, p. 5035
we arrive at the mixed-potential representation of E given in (171 provided (77 ix 4
continuous furnction of ' across any interface between dissimilar material lavers the
object penetrates, which then leads to the desired MPIE {13}

The decomposition of __C}_:E according to (21) is not unique and leads to different
MPIE forms. depending on the choice of g’ and . Below. we develop three
distinct MPIE formulations that have been found useful in MOXM analvses of the
radiation, scattering. and guidance of electromagnetic fields by arbitrarily shaped
conducting structures in layered media. In the interest of brevity. some details of
the derivations—which repeatedly invoke the equations (9)-{10) and their duals. as
well as the reciprocity and symmetry properties (11) of the transmission line Green's

functions-—are omitted.
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Formulation A

By invoking the properties of the transmission hne Green'™s functions, we may express

(19) as

+ V2 - i \' (ky: 2l )—é—iz“n[#—’- [0k, 212"

<t ,_U ())‘
Jz Dz 0=

provided the field point is within a homogeneous material laver. The form of the
above suggests that w.» may choose

G2k 2|o) = i) (24]

as the spectral domain scalar potentia: kernel (this choice corresponds to Formula-
tion A of [20]). Next. we make use of the identity (20) and combine terms in (231 10

arrive at (21). in which

..QA(k:ﬂ:l:, = 'r’h kyizlz")
_vv /{Vh(k‘,,;[:') 3 ké’u,;, L’;“(kp::}:’)]
kp ( ‘6) kp
-~ N n "/"i B !
+ Vtiﬂfo'?o!l;(1 - ﬂ:h) L Iz + zzr“” IMUSEIES (25)
€L ve(ke) €-

The space domain counterparts of (25) and (24) are found as

! 1 . ' l\‘ He€ re
G (p—p';=12) = 5L Sof Vik:2l2) + -2 V(i 2]2)
2 (k)

1 VR 22y R2ppe, Vo(k,: tl:)

- L 9, A A A A f 9y ) i 0 : VY !
+ 2[(:cav YY) cos Hz)—i—(;cy—%-ya:)smut?]sz{ = ke)? =

a Velk,: 12!
— (@2 cosd + y2sind) Jkonop, 1-—/f—f—€~1) Sl{—”LLIT)
fre€l ve(ke)

12
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/
Y . o,
+ zzr]é:iso{ll,(kp::k )} (26

and

. L Velk, o)z -
Cr"(p—p::|:):50{-——l—/—(€—(—;-{—;—)—2———} {27

respectively. where we have used the notation introduced in (13} (13). Observe thar
when the source and fleld points are within the same material laver, the rz and y=
components of g"‘ vanish. thus resulting in a significant simplification of this MPIL
formulation. Note, however, that G° in this formulation is a discontinuous funciion

of = across any interface between dissimilar material layers.

Formulation B

Upon using the properties of the transmission line Green's functions. we may also

express (19) as

VA ky: 2]2') = Vi (ki 2]2)

— GF(kyi 2|2y = LV (k2] — w;[

=
NE T T ,
-zV, j—kc?ez [F(kyzlz') + 22 qgj If(k,: z|2")
020 L 550 0\ Wlhizlo)
— (&L ___)__:___ﬁ,___‘___ .
( tZ :,+ZZ Za:’ ’/e,(kgr)z ( ,

provided the source point is within a homogeneous material layer. The form of the
above suggests that we may choose

- Ve(k,: |
Gk, z]2) = ——(—"——tz—) (29)

v (k)

as the spectral domain scalar potential kernel (this choice corresponds to Formula-
tion B of [20]). Next, we make use of the identity (20) and combine terms in (28) to
obtain (21). in which

1Y

Aky 2|2’y = L VMK, 212

13




_\-‘zv'[‘i"m::l:') kg (A»':‘:’J
t .
k2 (}*ﬁ') k2
L e N IE(hy: 212 R . , ,
— 2V jhomop, | 1 — S : kool :
0 J o’]o/l.( M) ke + 23 21,( b2l (30

In the space domain, (30) and (29) become

’ 1 ; f Aztﬁ i .
gA(p—-p::! )= §£S{‘.‘(bi313) ] A“\;‘(L;,.::u;:)}

(k')?
1 . n ey Vhh,: 212 ket Voo(hy o1
+ E[(w yy)cos?z)+(a:y+yaz)sm21)]52{ A sz L (:‘;; AA )}
e, It (k,: z|2'
— (2@ cosV + zysmﬂ)ﬂwwu( - Eﬁ) 51{‘—(—-'—-|—2——)-}
fle€ - l/e'(kil)
+ 220 B S {1 =1)) (31)
and )
Gd)(p__p/::i:r) = So{“‘:‘(—'—"l‘:—} (32}
ICTx

respectively. Observe that when the source and field points are within the same
material layer, the 2z and zy components of G* vanish. thus resulting in a significant
simplification of this MPIE formulation. Note. however, that (;° in this formulation is

a discontinuous function of z' across any interface between dissimilar material lavers.

Formulation C

The form of (19) suggests that we may also choose

Vi (ki 2|2") = Vi (ki 2]2)
k2

G4 (ky; 2|2") = (33)

as the spectral scalar potential kernel (this choice, which was previously used in [23,

for a planar microstrip geometry, corresponds to Formulation ' of [20]). Next. we

14
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make use of the identity (20) and combine terms in (19) to obtain (21). in whicls

Gk, 2|2) = LV (ki 2]2)
L ks z]2/) ~ [k 2|2
p
. AV k22 = Ve k2]
+vzzjk07/0ﬂt{ o lbicl )k? S )}
(]

Aa 2 ’ ko 2 K ; l I /t'() ‘ .y .y i
+ ZZ NSt - Lhyiz]2) + | —— 4 == = { = | [ [[(kazishy ) i34
P He€z el K,

The space domain counterparts of (34) and (33) are found as

GHp-p'::l7) = L So{ Vi (ki 12"}

A 2 o . Ih(k: 2|2 = Ik, =1~
__(z‘a:cos1)+zysm1))Jk0,]0m51{ Clkyz|2t) = IE (k2 )}
— (£2 cos ¥ +gZzsin ) jkonou) Sl{

Vitlhei=l) — Veth: :u:')}

S5 2 k02h / 1 l A‘oz e ", o
+ 22 nopepty Sog| T | L (ks cl2) + | —+ = = { | | [i{h 212 (33)
K, He€: €l k,

Vih(k,: z]2") = Ve(ky: |2
k2

and

G*(p—p'iz|d) = 50{ (36)
respectively. Observe that G in this formulation is a continuous function of both :

and z’ across any interface between dissimilar material layers.

Discussion

Although the three MPIE formulations are of similar complexity for arbitrarily shaped
conductors, Formulation C is the simplest (and thus the most efficient) one for strictiv
planar microstrip geometries. This formulation is also recommended when the con-
ductor penetrates an interface between dissimilar material layers. in which case For-

mulations A and B are not applicable, unless the MPIE (18) is augmented by addi-

15




tional contour integral terms. as discussed by Michalski and Zheng (201 However.
when the microstrip structure is confined to a single material laver (as is often the
case). Formulations A and B become attractive. because in that case two off-diagonal
components of their vector potential kernels vanish. which may result in significant
savings in the computational effort. The reader is referred to [20]. {21} for a more

detailed discussion of the properties of the three formulations.

4 Conclusion

A new. straightforward development has been presented of threc distinet mixed-
potential integral equation (MPIE) formulations for non-planar. arbitrarily shaped
microstrip structures embedded in planar. laterally open. multi-lavered. uniaxial me-
dia. These MPIEs may be used in conjunction with the method of moments to ana-
lyze three-dimensional microstrip discontinuities. such as transitions between printed
traces on different levels, vias, air-bridges, bond-wires, etc.. as well as microstrip patch

antennas with shorting pins and coaxial probe feeds.

A Transmission Line Green’'s Functions

The transmission line analog of the layered medium invoked in Section 2 comprises two
transmission line networks—having identical configurations. but different propagation
wavenumbers and characteristic admittances—associated with the TM and TFE partial
fields. In each of these two networks, a homogeneous material laver of the medium
of Fig. 1 is represented by a uniform transmission line section. In the case of an
unshielded structure, where the top (or bottom) layer is of infinite extent along the
z axis, the corresponding transmission line section als» extends to infinity, where it
is terminated into a matched load.

Cons.der a transmission line section corresponding to the nth material laver. char-
acterized by the parameters (1). Let this line section comprise a unit-strength current
source 7 at z’, as illustrated in Fig. 3. It then follows that the voltage V:” and current

I? at any point z within this section are governed by (9)-(10). in which A? = k7

1] n
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Figure 3: Transmission line section comprising a unit-strength current source.

and Y?=YP?, where the latter are obtained by substituting the material parameters
of the layer into (7)-(8). From (9)-(10). we find that V7 may be expressed in the

traveling-wave form (cf. [48, p. 213])

E‘kat:‘J’I {1“*‘ ﬁ(Z())fi—Jzk"‘(:<“:0)] [1+ ﬁ(:o)“’ﬁf:n(3>—fv‘;)*

2Y, [1- Tufzo) T,

n(:())} H

where z¢ = min(z,2'), z5 = max(z.z'). 5 is an arbitrary reference point within the
nth section (which is usually set to z, or z,4;. whichever is more convenient). and
(ﬁ(:o) and ﬁ(:g) are the reflection coefficients "looking to the left” and "looking to the
right,” respectively, at zo. In the above and in what follows, we omit the superscript

p for notational simplicity. By means of the translation formula

et}

P
[

—
il

s

(zo)eiﬂkm(z—:o) (3%)

where the upper and lower signs correspond to the right and left arrows. respec

tively, these reflection coeflicients can be expressed in terms of the respective termi-
. (.._ —‘* . . .

nal reflection coeflicients I}, and [},. which are related to the corresponding terminal

admittances Yn and Y, (see Fig. 3) as

= Y.~V = 1-T
T,= n_ o Y=y, —= (391

= —

Yo+ ¥, L+ I,
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For a transmission line section of a finite length d,,. a particularly convenient form of

(37) 1s
T r — o
, (—szn!:_:/‘ {i+ I" —i2kan{ig~2n J'Ll+ l”f_—‘"”\”’(-:"?l_ ,);
‘z(:\:): oY 7 [ — ; : - {10
~4n i'-l_" nIu (-.j‘k:"l’i
which is obtained by letting zy =z, and using (33).
The remaining Green’s functions can easily be derived from (40). Hence. [,{21').

which is dual to V,{z]z'), i1s obtained when Y, is replaced by Z, in (40) (which causes
the reflection coefficients to change signs). [,(z]|z") follows from (10) and {9). and
V.(z|s") may then be obtained from the reciprocity relation given in (11).

The voltage and current on the nth transmission line section that is source-free
satisfy (9)-(10) with the delta function absent. From these equations. the voltage at
any point = within the line section may be expressed in terms of the voltage V(z,)

across one of its terminal pairs. The result is

e—-jkml 2=z’ |

=g
V(z) = V(z) L4 T, ekl (11)

pre:
1+ rﬂ. 6—J2kzndn

where 2o =1z, or zo=12n4) (see Fig. 3). depending on whether the source is located to
the left or to the right. respectively, of the line section, and where the upper (lower)
arrow corresponds to = > g (2 < z9). We have omitted the subscript of V' in (41).
because the latter applies irrespective of the nature of the source. and dropped =’ from
its argument, because (41) only implicitly depends on the source location, which is
outside the nth line section. The current /(=) corresponding to {-11) may be obtained
by substituting the latter into (9).

Finally, we note that {38)-(39) are easily implemented in a recursive computer
routine to determine the leftward- and rightward-looking reflection coeflicients needed
in (40) and (41). The computations proceed from the outward-looking reflection co-
efficients in the top and bottom transmission line sections. where they vanish for
unshielded structures or otherwise are easily determined, provided the surface admit-

tances Ys; and Ys a4y are known. Observe that the exponential functions encountered

18
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in {38). (10). and (41) have nonincreasing magnitudes. so there is no danger of over-
flow. Wheu the »th transmission line section extends to positive (negative) infinity

along the = axis. the reflection coefficient T, ((I“",l) 15 set to zero in (40) and (41).
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Abstract

A space-domain mixed-potential integral equation approach i< applied in conjunction
with the method of moments to compute the radar cross-section (RCS) of coax-
loaded microstrip patch antennas having arbitrary or irregular shapes. The effects
of the substrate—which may be electrically thick and may consist of anv number of
planar. possicly uniaxially anisotropic dielectric lavers. backed by a ground plane  are
rigorously incorporated in the analvsis by means of the vector and scalar potential
Green’s functions. The latter are expressed in terms of the voltages and currents
on transmission line analogs of the lavered medium. associated with TM and TFE
partial fields. The current distribution on the microstrip patch is approximated using
vector ba.ts functions defined over triangular elements and the coax probe current
is expanded in terms Jf piecewise-linear subdomain basis functions. A simple probe-
to-patch attachment mode. compatible with the triangular element model of the
microstrip patch. is used to enforce current continuity at the junction. and the coax
aperture is modeled by a magnetic current frill. The far zone felds are found by the
stationary phase method, and are expressed in terms of the Fourier-transformed basis
functions and the transmission line voltages and currents evaluated at the stationary
phase point value of the transverse wavenumber. Computed RCS results are presented
for several loaded and unloaded microstrip patch antennas of various shapes and are
shown to be in agreement with published measured data and with computed results
obtained by specialized techniques. which-—unlike the method presented here  are
not easily extendable to arbitrary shapes.




1 Introduction

The radar cross-section (RC'S) of rectangular microstrip patch antennas was first stud-
ied by Newman and Forrai [1]. who used a spectral domain integral equation method
and validated it by measurements. Pozar [2] used a similar approach. extended 1o the
case of a uniaxial substrate and combined with an idealized feed model. to compute
the RCS of both loaded and unloaded rectangular pateh antennas. Jackson (37 in-
vestigated the superstrate effects on the RCS of rectangular microstrip patches, also
using a spectral domain integral equation method. Aberle et al. 1] computed the
RCS of loaded and unloaded rectangular and circular patch antennas using a spectral
domain integral equation technique incorporating a rigorous feed model. and corrobo-
rated their analysis by measurements. More recently. King and Bow [5] used a similar
approach to compute the RCS of finite arrays of rectangular microstrip patch anten-
nas. The RCS of cavity backed. loaded and unloaded microstrip patch antennas and
antenna arrays was studied by Jin and Volakis [6] using a hybrid approach combining
finite-element differential and integral formulations.

In this paper. we present an RCS analysis of coax-loaded microstrip patch antennas
of arbitrary or irregular shape. residing in a grounded dielectric substrate of infinite
lateral extent. The analysis is based on the mixed-potential integral equation formu-
lation in conjunction with the method of moments (MOM) [7] utilizing a triangular
element model of the patch. In this approach. which was pioneered by Pichon et al. ix!
and adopted by others [9], [10], [11], [12]. [13]. [14]. [13]. [16]. [17}. the effects of the
substrate and superstrate (if present) are rigorouslv taken into account by means of
the vector and scalar potential Green's functions. The latter are expressed in terms
of the voltages and currents on transmission line analegs of the favered medim, as
sociated with TM and TE partial fields. The current distribution on the mnwrostop
patch, which may have an arbitrary or irregular shape. i1s approxiniaced 1 terms of
vector basis functions defined over triangular subdomains {Ix. The substrate and
the cover layer (if present) may be electrically thick and uniaxially anisotropie. The

current on the coax probe is expanded in terms of piecewise linear subdomain basis

functions and the coax aperture is modeled by a magnetic current frill 101 112:0 A




simple probe-to-patch attachiaent mode (11 compatible with the triangular element
model of the microstrip patch. is implemented to enforce enrrent continuity at the
junction. The far zone fields are found by the stationary phase method, and are ex
pressed in terms of the Fourier-transformed basis functions and the transmission line
voltages and currents evaluated at the stationary phase point value of the transverse
wavenumber.

The remainder of this paper is organized as follows. In Section 2. a conpled <ot
of mixed-potential integral equations for the currents induced on a coax-lvaded mi
crostrip patch antenna is formulated. Also. the coax load model 1s developed and the
formulas for the far fields and RCS are stated. The formulation consistently emplovs
a transmission line analog of the lavered medium and isx thus directly applicable to
antennas with any number of layers. The relevant details of the transmission line
analysis are enclosed for easy reference in Appendix A. The numerical procedures
are described in considerable detail in Section 3. including the coax probe-to-patch
junction treatment. The approach relies heavily on concepts developed by the finite
elements community to efficiently organize the computations and the assemblyv of the
resulting matrix equation. The Fourier transforms of the shape functions encoun-
tered in the far fields computation are given in closed form. with the details of the
development relegated to Appendix B. In Section 4. sample computed RCS results
are presented for several loaded and unloaded rectangular and circular microstrip
patch antennas and are shown to be in agreement with published measured data and
with computed results obtained by specialized techniques. which —unlike the method
presented here—are not easily extendable to patches of arbitrary shape. New RCS
results are also included for a coax-loaded pentagonal microstrip patch antenna de-
signed to radiate circularly polarized field from a s'ngle feed. Finally, the snmmary

and conclusion are given in Section 3.

2 Formulation

A. Problem statement and assumptions

The geometry of the problem under consideration is illustrated in Fig. 1. where the
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Figure 1: Geometry of a coax-fed microstrip patch antenna.

dielectric layers, which are assumed to be nonmagnetic, are characterized by their
transverse and longitudinal dielectric constants, ¢, and ¢.,. respectively. relative to
free space, and anisotropy ratios v, = €,,/€m. If dielectric losses are present. ¢, and
€.n are multiplied by (1—jtané,). where tané, is the loss tangent of the nth laver.
(Here and throughout this paper. the ¢/** time convention is implied.) The lavered
medium, which may consist of an arbitrary number of planar layers. and the ground
plane are assumed to be of infinite lateral extent. The coaxial probe. which has the
inner and outer radii a and b. respectively, is centered at (r.,y.). The patch. the
ground plane, and the probe are assumed to Le perfectly conducting.

By invoking the equivalence principle [20], the original problem of Fig. 1 may be
replaced by its equivalent, shown in Fig. 2. In the latter, the conducting patch and
the coax probe are replaced by equivalent electric currents. J, and [. respectively.
Also, an equivalent magnetic current frill, M, is placed over the coax aperture. which
is shorted. To simplify the analysis. we assume that the distribution of the aperture
electric field is that of the TEM coax mode. We further assume that the coax probe

current is z-directed and is azimuthally invariant on its circumference. The strength
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Figure 2: Problem equivalent to that in Fig. 1.

of the magnetic current will be related to the load impedance. Z;. and to the value of
I at the base of the coax probe. As a result, the patch current, J;. which resides on
the surface S and represents the vector sum of the currents that exist on the hottom
and top sides of the microstrip patch, and the total z-directed coax probe current. /.
which is uniformly distributed on the perimeter of the cylindrical surface (', remain
the basic unknowns of the problem. Once these currents are found. other quantities

of interest, such as the far fields and the RCS of the antenna, are readily determined.

B. Integral equations

Since Creen’s functions for the layered medium of Fig. 2 are available, the electric
field produced by the coax-fed patch may be expressed in terms of integrals over the
as yet unknown currents J, and I, weighted by the appropriate kernel functions. The
fields excited by the plane wave and M, can also be easily determined. A coupled set
of integral equations for J, and I may then be obtained from the condition that the
total tangential electric field must vanish on the patch and the probe. On the coax
probe, since I is assumed to be azimuthally invariant, we only enforce the vanishing

of the z component of the electric field, averaged over the probe circumference. In

N1

ot



what follows. we use the following notation: r is the position vector of an arbitrary
point with respect to the global coordinate origin. p is the projection of r on the ry
plane. p. is the radial position vector of the coax probe axis. primes denote source
coordinates, unit vectors are distinguished by carets. and the subscript s denotes
components tangential to S. '

Upon using the procedure described above. we arrive at a coupled set of inteeral
equations for J; and /., which may be expressed as (the details of the derivation are

omitted here due to lack of space)

LC{4(r|r')Js(p') ds' + V,/SGO(HT’)VS'. J.(p')dy

NN Ay,
+ / K,.(7)) (=) d= +V§,/1\o(r|:) G
c C dz’
-0 E(r)=E[(r). re~ (1

/sgze(zlr’)éé- ) dS"+ /Qo 2| ) V- Jo(p) dS’

+/C77C;;(z'[f~ (z')dz’' —/K¢, dl :)d:

- & :):S‘( ). z€C (23

where g. = p—p,, @' = p.— p'. and where the script symbols are used for quantities
averaged over the coax probe circumference. The kernel functions in (1)-(2) may he

expressed as

Galr|t!) = / VE(ky: 212 ) ok lp— o) Ky dk, ()

, 1 dk,
Go(r|r’) =5 ) P( 2|2 Jo(kolp—P'l) A— (4)
. kon .
K,.(r]2) = 2‘;}"/ Q(k,: 2= ol kya) Ji (ko |~ p.]) dby (3)

ik,
K, (7)) =—~/ P(ky: 2| ol a)Jo(kelp— p) T (6)
3 _ koy -
Goolzlr) 2‘;]"/ Riky: 2|2V ol kya) i (o — p'1) (7)
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in which .J, denotes the Bessel function of order n. &, is the spectral wavenumber
variable corresponding to p, and where ng=/pq/€o and kg =w/Hoeg are the intrinsic
impedance and wavenumber of free space. The Jy(k,a) factor appearing in the above
equations is the result of averaging of the respective integral kernel over the (oax
probe circumference and the application of Graf's addition theorem [21. p. 3631, In

(4)-(10). we have introduced the auxiliary functions

P(ky: 2]z = V(kz]2') = Vi, 2] 2) (1)
Qh =) = VM z|2)) = Vi (ky: 212)) (12)
Riky; z|2') = [Mkyiz|2") = I8 (ky: 2]2") (13)
. , ko V¥ , .t+el ko o
S(hizie) = (A—O) INk:zl2") + {ft ;' - (I‘l) } Io(hy:z]2) (11
(4 P4 4

where €, and €. denote the longitudinal dielectric constants of the observation and
source layers, respectively. This convention is in effect throughout this paper. unless
the layer index is explicitly shown.

It is important to note that the integral equations (1)-(2) are in the mixed-potential
form [22], {23], [24], [25], which is amenable to the existing numerical solution proce-

dures developed for scatterers of arbitrary shape residing in a free space [18]. [26].

C. Transmission line network analog of the layered medium

As an aid in deriving (3)-(10). we have employed a transmission line network analog
of the layered medium, in which each layer is represented by a transmission line sec-
tion. as illustrated in Fig. 3. This analog comprises two networks. which arise from

the decomposition of the electromagnetic field into partial fields that are transverse-
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Fizgure 3: Transmission line network analog of the layered medium.

magnetic (TM) and transverse-electric (TE) to = [27. pp. 183-217]. The quantities
corresponding to the TM and TE networks are distinguished by the superscripts e
and h, respectively. The characteristic admittance and propagation constant of the

nth section of the TE and TM transmission lines are given, respectively. as

KR , , -
Yh = m kE = \[k3ewm — k2 (15

and

Ve = Focen ke = \Jkier — k2 /vy (16)

nok:n i ’
where the branch of the square root function is determined by the condition that
kP be positive when it is real-valued, or that J{k*,} < 0 otherwise. Here and in
what follows, the superscript p stands for e or h. For each transmission line network.
we introduce the Green’s functions V/”(k,; z|2’) and I?(k,: z|2’). which represent the
voltage and current, respectively, at a point z. excited by a unit-strength shunt cur-

rent source located at z’.

We also introduce the Green's functions V?(k,: zjz"} and
IP(k,: z|2"), which represent the voltage and current, respectively. at a point z. ex-
cited by a unit-strength series voltage source located at =’. These four transmission
line Green's functions, which can easily be derived by network theory methods. are

discussed in more detail in Appendix A.
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Note that the integral equations (1) -(2) are valid for a medium with an arbitrary
number of layers. provided the appropriate transmission line Green's functions are
used in (3)-(10). Also. it can be shown that the kernel functions appearing in (1} ¢2)
exhibit only mild singularities when the source and observation points coincide on
S and €. which makes these equations particularly amenable to numerical solution

procedures.

D. Coar load model
We assume that the aperture field in the problem of Fig. 1 is that of a TEM coax
mode with a voltage

V=211 (17)

where Z; is the load impedance presented to the antenna by the coaxial transmission
line and I, is the load current. In view of this assumption. with respect to a polar
coordinate system (9. V) centered at (r., y.). the magnetic surface current M, in Fig. 2
has only a v component, given as [20. p. 112]

K Zr

A\[,j(g): —[L‘;, K ZM

(13)

in which a < p<b. The electric field excited by this magnetic current frill embedded

at z==:"in the layered medium, which appears in {(1)-(2), can be expressed as
Efr)=1LT(p:z).  &(z) = LU() (19)

where, for notational convenience, we have introduced the auxiliary functions

T(p:z) = K/O "'j(kp:3|~”')[Jo(kpa)—Ju(kpb)}Jl(kaP—Ppi)(1/\'0 (20)
U(z) = 1\770/ Ik, 2|2 [Jo(k a)— 'lo(kpb)]JO(kpa)l‘b‘Mo (21)
J ko€,

The second Jy(k,a) factor in (21) results from the averaging of L over the coax
probe circumference In the case of a short-circuit load (£ =0) the magnetic current

frill is absent. In the other extreme, when the antenna terminals are open-circuited

9
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(Z1 = 2c), the frill is absent as well. but we impose the condition [, =0 in the sohition
procedure. For any other load. I, is not known a priori and must be computed
together with J, and I. Note that (20)-(21) are in a general form applicable to a
medium with an arbitrary number of layers. provided the appropriate transmission

line Green's functions V? and I are emploved (see Appendix A).

E. Incident field

The structure of Fig. 1 is excited by a plane wave field
EinC(r) - (é,’EénC + SalEinC) ejko[psinG, cos( =y ) +{z~1) cos §,] (22}

incident from the direction (8;.:) on the grounded layered medium from the upper
half-space, which is assumed to have free-space parameters. Observe that in {22) the
phase reference point is chosen on the = axis at = =d, where d specifies the location
of the uppermost interface. The plane wave (22) is the source of the *incident’ field

appearing in (1)-(2), which may be expressed as

Bi(r) = [’3‘ Ve(ky; <ld) + @i V(K3 zid)] ekep (23)
£1(=) = = Lsinb, 1°(ki: 21d) Jo(kla) ke P. (21)

where the direction of the unit vectors p; and ¢;, and k; zf),»k‘f. with Alj = kg sin d,.
are specified by the direction of arrival of the plane wave. In the above, V'? and [
denote, respectively, the voltage and current on the corresponding transmission line
network analog of the layered medium (see Fig. 3), excited in the uppermost section

by the incident voltage waves
VE(z) = cos§; e eholsmteoss (25)

VE(z) = e gthalemiienst (26)

propagating in the —z direction. In (23)--(24), we explicitly indicate in the arguments

of V7 and I? their dependence on £}, and on the phase reference point {z=d) of the

10




bl

plane wave field. (Although similur notation is used. V' and [? appearing in (23}

{24) should not be confused with the transmission line Green's functions introduced
earlier.) The Jo(k‘ja) factor in (24) is the result of the averaging of L over the coax
probe circumference. Observe that (23)-(24) are in a gener  form applicable to a
medium with any number of lavers. provided the appropriate transmission line volt-

ages and current are emploved (see Appendix A).

F. Far fields and RCS
The *scattered’ far-zone field radiated by the patch and probe currents can be deter-
mined by the stationary-phase method [28]. It is then found that the patch contri-

bution to the far field in the direction (4,, 2,) is

k ] . - / ’.p vt -
Ej ~ i emlresio vegosd) - [ 3,6 R0 as (27)
2r)r s
s kq —jko{r—dcosf,) shygo, Jrry s ' jk°~p’ o 3
B~ s—e cos 0, VI (k):d|z") @o - | Js(p') e F dS (23)
¥ 2mgr S

where the orientation of the unit vectors g, and @,. and k) =p,k?, with k) =4y siné,
are specified by (8,, p,). It is assumed in the above that the layered medium and the
radiating structure are confined to the region =z < d. The contribution of the coax

probe to the far field is found by a similar procedure, with the result

ko

27T

B~ —

e‘fk"("dwse").]o(k;a) ejkopcsinﬁo cos(wo—ve)
772
.sinOOcoséo—e,Q/C1(:’)Ij(k::d|:')d:' (29)

where (p.,.) are the polar coordinates of the probe. Analogous expressions for
the far field of the magnetic frill current can also be given, but are omitted here
because the contribution of the coax aperture—which is assumed to be electrically
small—to the total radiated field has been found to be negligible. We note that (27)-
(29) are applicable to multilayered media. provided the appropriate transmission line
Green's functions are employed (see Appendix A). However, these simple expressions

lose validity near the horizon (8, = 90°), in which case the stationary phase point

I
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approaches a branch point singularity in the & -plane. and guided wave phenomena
dominate the far field.

If the plane wave field incident in the upper half-space is polarized in the « direction
and the ¢ component of the scattered field is considered. where u and ¢ stand for ¢
or . the RCS of the antenna is given as [29, p. 18]

O = drrt —lgﬁf— (30}
ur & A |Ene 2 R
It should be noted that the scattered field in the above does not include the plane

wave (geometrical optics) field reflected by the layered medium.

3 Numerical Method

A. Weak form of the integral equations

The MOM is applied to the weak forms of (1) and (2), which are obtained by “testing’
them with suitably selected weight functions {Ax} and {N.}. respectively. where the
former are defined over § and the latter over C. As a result. upon using Gauss’

theorem [30, p. 503] and integrating by parts, we obtain (cf. [31])

(46 (G0 3) ) = (Ve A (6o ¥ 1,) )
S/s S/s
. . ! AN
+<Ak'gm<l\gz~1> > _<V3'Ak‘<[\@.-—> >
Cr/s (l': C S

- <Ak' [ E;>S = <Ak1Es">~ (31)
)

. ! d.,'\,' /
<1’Vk~ <gzg~. o.- 'Is> > - < d k- <g¢-vs' Js> >
sic < Sie
! N ' . C e
+ <1}Vk7 <Kzu [> > - <C—l“li,<lcqs, ﬂ> > - <;\vk.g;> - <.\;‘.‘¢‘/;> (32‘
cle dz dz/c /.- c ¢

where we have introduced the notation () for an integral of a product of two functions

separated by the comma. The dot over the comma signifies a “dot product’ of vector
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arguments and the prime over ) indicates that the integration is over the primed
(source) coordinates, while the subscript S or (" designates the domain of integration
(Le.. the surface of the patch or the length of the coax probe-—see Fig. 2). For

simplicity. the arguments of the integrand functions are omitted in (31j-(32).

B. Patch current erpansion

The microstrip patch is modeled by triangular elements. as indicated in Fig. 2. The
probe-to-patch junction can be located anywhere on the patch. including edges and
corners, but must coincide with a node of the triangular element mesh. The nodes of
each triangular element are assigned indices ¢, j, and & in a counterclockwise direction.

as illustrated in Fig. 4. We adopt here a local indexing scheme, in which these indices

assume the valves 1, 2, or 3, in a cyclic manner. The sides of a triangle with an

k

Figure 4: Local coordinates associated with a triangular element.

area A are formed by three edge vectors. £;, £;, and €;. where £; is oriented from

node j to node k. The position of the ith node with respect to the global coordinate
origin is specified by the vector r;, whose projection on the zy plane is p;. Since the
microstrip patch lies in a z = constant plane with z known. the location of an arbitrary
point  within an element may also be uniquely specified by its radial position vector

p = p;+p;, where g, is the local position vector originating at the ith node of the

13
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element. As indicated in Fig. 4. the three local position vectors further divide the
element into three triangles. where the area of the triangle opposite node 1 is denoted
by A,. To facilitate the integracions over irregularly shaped triangles encountered in
(31)-(32). we introduce for each triangle a "natural’ coordinate system (L,. L. L).
where L; is known as the “area coordinate’ or ‘shape function” associated with node
! of the element [32. p. 110]. and is defined as

3

A,
Li=—. SN L=1 (33)

=1
In terms of the area coordinates, the local position vector g; may be expiessed as

o0, =4 L;— &L (34)

To represent the patch current on each triangular element, we introduce a vector basis

function A;, given as (cf. [18])

A =2 (35)

Noting that [33]
. b g
VL, = —n, 71 (36)
where n; is a unit vector normal to edge ! in the plane and pointing out of the

triangular element (see Fig. 4), we find the divergence of A, as
V,-A; = — {37)

We also find that n;- A, is constant on edge 2. which makes it easy to enforce the con-
tinuity of the normal component of J, between the elements that share this edge. The
patch current density and its divergence on each element may now be approximated

as

- (33)

3 3T
J, =Y LA, V- J, =3 -
=1 =

N

=1

where [; is the current leaving the element through edge ..
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element from node j 1s denoted by A, For each element. we introdnce a pair of linear

shape functions (N, ..V, ). defined as (of. (34, p. 941 !

h, o
N o= L Z,\: = 1 1449
h =

The location of a point = on an element may now be specitied as
T= 40k, o, =zm, UY

where 7, is a unit vector pointing out of the element at node /. Observe that the

value of ¢, is either +1 or —1, and that ¢,= —¢,. From (403, it follows that

d e,
— N\, = — i1l
dz h

The axial probe current and its derivative on an element mayv now he approximated
by the expansions
2 J 2 I
. ¢ '
[=Y leN,.  —I=)+ RS
d: h

=1

where [, is the current leaving the element through node 1.

D. Attachment mode

The current expansion (33) is not suitable for a patch element having the probe to-

15




patch junction point as one of its nodes. 1o represent the current distribution on <neh
Junction elements,” a special "attachment mode” is required. which is superposed on
the non-junction part of the current. represented by (3%). Let there be N junction
elements attached to a junction node. where the total current /; enters the microst rip
patch (see Fig. 6. where only one patch junction element is shown for simplicitvy.

Also. let the junction node of each junction element be assigned a local index /. and

k

L

Figure 6: Geometry of the probe-to-patch junction.

let the angle between the element edges that meet at this node be designated «,.
Furthermore. let the sum of the junction vertex angles be denoted by a. (Clearly.
a=2r. unless the junction node is on the edge of the microstrip patch.) To represent
the junction part of the current on an element whose node 7 is the junction node. we

use the basis function [12]

y e
II, = —;—*—(A]+Ak) (43
20
The junction current density and its divergence on this element may then he expressed
as
4%
J, = [; 11, V- J; = —[J““{ (14
(4 95

where the second expression follows from (43) and (37). The union of the currents
represented by (44), which only exist on the patch elements adjacent to the junc-
tion node, form the patch part of the attachment mode. As mentioned above, this
attachment mode exists in addition to the non-junction part of the patch current.

represented by (38). The coax probe part of the attachment mode. which extends

16
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over the line segment adjacent to the junetion nodeo s sumply given as

d !
A 4

= I\, R
F=10Y = h

A0
where it is assumed that the junction node has a local index 0 We pote that this
attachment current is easily incorporated i the expansion (125, by setting [ =[5 on
the junction line segment. We also note that the current given by 1 111 does not enter
the patch through the junction node: rather. it enters through the element edees tha
meet at that node. Consequently. unlike some more rigorous attachment modes 357
(36]. (41) does not correctly model the diverging current behavior near the junction.
Nevertheless. the current continuity at the junction is satistied in a global sense, 1.0,
the total current entering the Ny junction patch elements is equal to the current /)
leaving the coax probe. and the net charge associated with (141 (151 i zero. This
attachment mode is easily implemented in the MONM procedure because it comprises

regular basis functions already used to expand the non-junction part of the current.

E. Global MOM matric assembly and solution procedurt

The testing functions in the integral equations (31)-(32) are drawn {rom the same
sets as the basis functions used to represent the current on the patch and on the coax
probe. Hence, {A,} consists of A withi=1.2.and 3. and n=1. . N«. where N
is the total number of triangular patch elements. Similarly. { Ni} consists of ¢/ N/
withi=1,2,and n=1.....N¢. where N¢ is the total number of line segment elements
on the coax probe. In addition, (31) is tested with the patch part of the attachment
mode. comprising the union of the basis functions I where n=1.2... .N\;. The
resulting equation is then combined with the equation that results from the testing of
(32) with the coax part of the attachment mode. N where the nth probe element
is assumed to be adjacent to the junction. As before. we assume here that the local
index of the junction node is i. In the above, it was necessary to introduce the
superscript (n) to distinguish the local basis functions associated with element n. In
what follows, where there is no danger of confusion. this element superseript will be
omitted for notational simplicity.

When the expansions (38). (12). and (41)-(15) are substituted ituto the integral

17
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equations (31)-(32), the coeflicients I'"" are constrained by the boundary conditions.
which require continuity of the normal components of J, across the edges shared
by adjacent elements. or their vanishing at the boundary edges of S. as well as
continuity of the coax probe current between adjacent segments. On the uppermost
probe segment. if the junction node has a local index /. I is et 10 [, which
explicitly enforces the continuity of the attachment mode current at the probe-to-
patch junction. Similarly. on the line segment at the base of the coax probe. if
the load node has a local index ¢. !,("} 1s set to {;. In general. I; and {; are not
known a priori and must be computed together with the other current expansion
coefficients. In the unloaded case (when Z; =2c). ~ is set to zero. If the number of
the non-boundary triangle element edges is denoted by N and the total number of
the unknown current coefficients by N, then N =Ng+Nc+1 (or one less that number.
if Zr =oc). As a result of this procedure. the coupled integral equations (31)-(:32)

are converted into an algebraic system
[Zmn )] = [Vin] (46)

where [Z,,,] is the N-by-N global MOM matrix (also referred to as the global impe-
dance matrix). [/, is the N-by-1 global vector of the sought after current expansion
coefficients, and [V7,] is the N-by-1 global voltage excitation vector.

To assemble the global systemn {46). we consider one source elenient-test element
pair at a time. Let the global indices of these elements be n and m. respectively.
Then. for each such pair we assemble a local system

[z = ) (17)

113

“:(”1)

where [Z7™)] is the local impedance matrix and | ] is the local voltage excitation

i/
vector. Here, the primed local source element indices ¢, j’. and (in case of a triangular
element) £’ follow the same cyclic convention as the unprimed ones. Observe that
there exists a unique mapping between the local coefficients {I/™} of each clement

H

and the global current coefficients {/,}, where the reference directions of the latter
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are specified by the order in which the element nodes appear in the input geometry
data. This mapping determines to which entries of the global system {16) should the
elements of (47) be added. and with what signs.

Consider first a test element, S,,. on the microstrip patch. Then. if the source
element, S.,. is also on the patch. the entries of the resulting 3-by-3 local impedance
matrix are found as

mn i ' 1 . Ly (1S
Zi(i’ ) — <A,’2 <GA.A,'I>%>S - <T{ <('o §>5,,>SY { IN)

If, on the other hand. the source element, C,. is on the coax probe, there results a

3-by-2 local impedance matrix with the entries given as

’ 1 1 I
zimm A f., <[\’oz.c,u\',-/> —{ —, <[' . -—> > 49
i < €, g e ls. 1 Lo ke, ., (49)

In addition, when (', is the line segment at the base of the probe and L is the local

index of the load node, this matrix is augmented by the load contributions
Zi(inn) = — <Az ém T> (50)

which only affect the column of {49) corresponding to the load node. Finally. the
elements of the 3-by-1 local voltage excitation vector resulting from testing over Sn

are found as

pm < <Al-; E;> (51)
Sm

Next. consider a test element, (., on the coax probe. Then. if the source element.

S,., is on the patch, there results a local 2-by-3 impedance matrix with the entries

] 1 1\
(mn) 4 ~ 7 - -
i3’ - Cii'\i~<gz . C‘A;'> - —<Q .—> > {(52)
< 4 e : Sn >C7m <h o ‘»‘ Su '

given as

If, on the other hand. the source element, (", is also on the coax probe. the entries

19




of the resulting the 2-by-2 local impedance matrix are found as

Z""") a N, <)\(’\> — £,<K0.i> (530
Cole, h hile, -

In addition, when (', is the line segment at the base of the probe and L is the local

index of the load node, this matrix is augmented by the load contributions

Ztm = <c,.\;-.u> 51

m

which only affect the column of (33) corresponding to the load node. Finally. the

elements of the 2-by-1 local voltage excitation vector resulting from testing over (',

ptm <C,A\f,v_g;>. (35)

The local impedance matrices given above must be further modified to include the

are given as

contribution of the patch part of the attachment mode. Hence. let J be the local
index of the junction node on the coax probe. Then, for every patch junction element
5., whose junction node is assumed to have a local index '. the entries of {19} are

augmented by

mn Gy ! Q, '
Al V= - <Ai;<GA~,2_a“AJ'>S > - <A <('x —Aw>\ >
1 o\’
e w_.> 56)
+ <A < LS Sn>§m (b

and the entries of (33) are augmented by

Z(mn) - Ci./\rﬁ g"D f‘l 'QC A - C1 ‘\rl' g:‘.)‘ .i’i Akf' Ak'
Q0 Salc 20 Sn /.-
+ < <gm,a‘q>n> (57)

Cm

Note that (56) and (57) only affect the column of the respective impedance matrix

corresponding to the junction node. Furthermore. for every patch junction element

20




S whose junction node is assumed to have a local index o,

given by (52) is augmented by

{rnn})
/J —_— -

In addition. the element Z}}"

term’

a Ly ! v
"nn i o 2 i
A ‘—A,;<(,A.TA,> S

20

ul 2a

S ¢ 91
g (_1_4. T—xit\-'

Ql 4 ' ! . ‘r' !
-+ j**A;cl <(l4 :(;““11,f> + —‘—“Al\ <(r4. .(L—A;u>
(41 N

Snls 20
(x, < mf

_ (..
N 1 "o, 1

in which ¢’ is the local junction node index on element =,.

m

junction element S

given by (53) is further augmented by

Z(mn) %A;'ér:-<1{g:-(ﬁz’~\.x'>f‘ - - A“ Q ([\‘- ‘ I‘ I> >
5 Culs, TS
i AN
+ *Or——-,<[\(g-—>
aA hic.fs,
and by

Z‘"‘"’_<i’i/1 o r> +<i’~‘—Ak-g..’1’>
Sen 2 5

Seny

in which L is the local index of the load node on the coax probe.

excitation vector given in {33) is augmented by

pim - -<11‘-A E> —<———Ak E>
2o S Yex <

e -

of {331 1s augmented by the attachment mode

the impedance matrix

| ~<f)—' 1M<(,,,A > >

£ON)
welf
B >~\‘,n
i S,
1 -l‘)!

Similarly. for every patch

. whose junction node has a local index .. the impedance matrix

vy

(i)

bl

Also. the volrage

(623




~
te

Note that (58)~(62) affect only the row of the respective local svsten (171 corresponid
ing to the junction node on the coax probe.

[t can be shown. by using the reciprocity properties of the transmission line Green's
functions (see Appendix A). that-—apart from the load terms - the local impedance
matrices defined above posses symmetry properties, which may be exploited to nearly
halve the computational effort involved in filling the global impedance matrix in 1 61,
The integrals over the source coordinates. which appear in the impedance matrices
above. involve kernels that are singular when the test and sonrce elements coincide.
These singularities are extracted and integrated analvtically [33]. leaving well-hehaved
integrals over triangular and line segment elements. which are numerically evaluated
by Gaussian quadratures (see. e g.. {32, p. [13} regarding Gaussian rules for triangular
domains). On the other hand. the testing (exterior) integrals have regular and <lowly
varying integrands, and may thus be approximated using one-point quadrature rules

[18]. For example, the integral in (51) is approximated as

(A:E) ~szem Erm) 1Y
S E4
where g™ and r°™ denote, respectively, the local (with respect to node 1 - <ee Fig, 1
and global position vectors of the centroid of element S,,. This procedure results in
significant savings in the computational effort. even though it sacrifices the svmmetry
properties of the impedance matrices.

Once the complex-valued matrix equation (16) is assembled and solved. which 1~
accomplished by standard procedures (LU factorization with partial pivoting. followed
by a forward and back substitution [37. p. 160]). the current density within each
microstrip patch element may be obtained from (38) (and (44). in the case of a
junction element). Similarly. the current within cach coax probe element mayv be
found from (42). The resonant frequencies and @Q-factors of a microstrip antenna mav
be found as zeros in the complex frequency plane of the determinant of the global
impedance matrix (this is accomplished by means of the Miiller's search procedure 137,
p. 120]). The corresponding modal currents may then be obtained from (16} with the

excitation voltage vector set to zero.




F. Computation of spectral integrals

For the solution procedure described above to be practical. the spectral integrals that
occur in {3)-(10} and in (20)-(21) must be efliciently evaluated. To accomplish that.
these integrals are accelerated by asvmptotic integrand subtraction and the method
of averages (39], (10]. [11]. In addition to these techniques. an interpolation and table
look-up scheme is implemented to further reduce the computation time 2397, 7101, "1
The integration path is properly deformed to avoid the integrand singularities. which

occur on or near the real axis in the &, plane [14].

G. Far field and RCS computation

Once the coefficients [; are found for each element. the current expansions (33}, (42},
and (14) are substituted into (27)-(29) to determine the far fields. The integrals
encountered in (27)-(28) are then recognized as Fourier transforms of the vector basis
functions (35). evaluated at k, =k;. In view of (33} and (34). the Fourier transform

of A, associated with a triangular element S, may be expressed as

A, = <A,.e;fk"'p' >,
S

Sn

= L (e, - 6,1 161)

where L, denotes the Fourier transformed shape function L,. Upon nsing the proce-

dure of Appendix B. we may express L, as

L= = S bk f2) R

P v=1

l
Iy s Jkp'p«-
[I(fl/\/ ~J}o((z]l\p/2)]c 7

[\]
Ix?‘ Ps"l&- [v

(lklx /) +}j() (LkL /) ] Jkﬂpk {651

(8]

where p., is a position vector of the midpoint of edge i of the element. o, = u- €.
b, = v-£,. and j, denotes the spherical Bessel function of order n. We note that
although (63) can be put in a simpler form. this is counterproductive because 1t

introduces removable singularities. which occur when k, happens to be orthogonal to
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any of the three edges of the element. i.e.., when a, =0 for i =1. 2. or 3. In contrast.
the expression for L given in (63) is clearly nonsingular. unless &, =0. Even in the
latter case. it can be shown that (63) approaches a finite limit /3 as &, — 0. We also
note that when {65) is evaluated for k, =k}, as is required in (27)-(28). then &, =4 .
u=p,. and v=¢,.

The integrals that arise when the probe current expansion (12} is substituted into
(29) depend on the form of the transmission line Green's function [/ (4,1 d{z"). Let us
suppose that the coax probe extends over layer [ of thickness d;. between the z-axis
coordinates z; and z41. where z4; <d. Consequently, /¢(k,:d|z") can be expressed as
a constant factor times [$(A,: z;41]2"). Using the traveling-wave form of the latter (see
Appendix A). we then find that the integrals over a line segment element (', within
layer [, required to evaluate (29). are given as

. —e
<c,-.\"l. Lo(k ::1+1i:')>l = i (1 i )
A c. 1 _ ﬁe.ﬁef-ﬁ?k:‘d(
hf kel ippe s e
e ethis 21 + ik )|

e

- De€-1k§[(2d1+:a{Cd'o(hk;/z) —jjl(hkjl/;))” (66)

where A is the length and =, the midpoint coordinate of the element. ¢, 1s defined in
(10), &%, and Y;° are given in {16). and where the terminal reflection coefficients ‘F,
and F;F are found from (71). When used in (29), the above is evaluated for &, = k7.

Once the microstrip patch and coax probe contributions to the far zone fields are

determined. the RCS is readily obtained from (30).

4 Sample Results

The techniques developed in the previous sections have been implemented in a FOR-
TRAN computer code. In this section. we present sample computed monostatic {i.c..
0, =0;, s, =) RCS results for loaded and unloaded. coax-fed rectangular. circu-

lar and pentagonal microstrip patch antennas (see Fig. 7). and -where possible—
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Figure 7: Geometries of probe-fed (a) rectangular, (b) circular. and (c) pentagonal
microstrip patch antennas.

compare them with available published data. In all cases included here the patch
resides on a single-layer substrate of varying thickness h. without a cover layer (see
Fig. 1). The incident field is #-polarized, with the electric field amplitude £3* =1 \/m.
All RCS results are plotted vs. the frequency f, and are referred to 1 m? and given
in dBsm (‘decibels above a square meter’) {29, p. 160}.

The results shown in Fig. 8 are for an unloaded (Z; =o0) rectangular patch antenna
(see Fig. Ta) on an isotropic substrate characterized by ¢.(1—jtané), with ¢, and
tan § specified in the figure caption. Newman and Forrei’s [1] and Pozar's [2] results
for this antenna are included for comparison.

In Fig. 9 we show results for a coax-fed rectangular patch antenna (see Fig. 7a.

[
()]




where (., y,) are the feed point coordinates) on a lossless uniaxial substrate. Three
sets of data are presented, corresponding to Z; = x (no load}. 7; =30Q imatched
load), and Z; =0 (short-circuit load). For the first two cases. our results are compared
with those of Pozar [2]. We note that. as expected. the first and. 1o a lesser degree.
the second RCS peak are suppressed by a matched load. and that the shorting pin

causes the RCS peaks to shift up in frequency.

O T
~———e NEWMAN & FORRAI, 1987

POZAR, 1987
a a a THIS APPROACH

04 (dBsm)

i e My L
2 6
f (GHz)

Figure 8: RCS of an unloaded rectangular microstrip patch antenna. The parameters
are: L =36.6mm, W =26mm, h=1.58mm, ¢, =2.17. tan § = 0.001. 2, = 45°. and
0, =60°.

The results shown in Figs. 10 and 11 are for coax-fed circular microstrip patch
antennas (see Fig. 7b, where z, specifies the feed point location) on isotropic sub-
strates, with the loads Z; =oc, 50, and 0. In Fig. 10 we also show for comparison
Aberle'’s [42] computed results, and in Fig. 11 we include the results computed and
measured by Aberle et al. [4] for Z; = 0o and 50§2. In reference to Fig. 11. it is of
interest to note that our results are closer to the computed, rather than the measured
data of Aberle et al. [4].

Finally, in Figs. 12 and 13 we show results for a coax-fed pentagonal microstrip

patch antenna (see Fig. 7c, where P denotes the feed point) on an isotropic substrate.
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Figure 9: RCS of a rectangular microstrip patch antenna for Z; = . 50. and 0.
The parameters are: L = 10mm, W = 15mm, 2, = —L/4. y, = —=W/4 b = 12T mm,
€ =13, ¢, =10.2, a = 0.432mm, b = 1.397 mm, p, = 45°, and §; = 0°.

With the dimensions given in the caption of Fig. 12 (which correspond to a case
considered in [43, p. 245]) and no load attached, the first three excitation-free modes of
this antenna were found at the resonant frequencies f,, =1.123 GHz. f., =1.194 GHz.
and fr3=2.184 GHz, respectively. The modal currents of the first two modes. which
resonate at very close frequencies, are orthogonal to one another. With a properly
selected feed I ation, these two modes are excited with equal amplitudes. resulting
in a circularly polarized (CP) radiation field at a frequency that lies between f;
and f.2 [43]. The coax feed is used to minimize the degradation of ellipticity by
unwanted radiation from the feed network. In the case of Fig. 12a. where -, =0°. the
polarization of the incident field is such that it excites the first mode of the antenna.
but is orthogonal to the second mode. As a result, the co-polarized RCS component.
749. dominates the cross-polarized component, oy, except near the CP frequency. at
which the first and second modes are coupled through the loaded coax feed. and the
value of oy, approaches that of ggg. The second peak in the plot of 75, corresponds

to the third mode of the antenna. In the case of Fig. 12b, where 2, =45°. the incident

-
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Figure 10: RCS of a circular microstrip patch antenna. (a) Zp

and 0Q. The parameters are: R =23mm. r, = 9.2mm. h =
tan 6 =0.0009. ¢ =0.432mm, 6=1.397 mm, ¢, =0°. and 6, =60°.
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Figure 11: RCS of a circular microstrip pateh antenna. iay 2 = ~. b 7,
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and 0Q.
tan 4 =0.0009. a =0.132mm. h=1.39Tmm. 2, =0° and #, =63°
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Figure 12: RCS of a pentagonal microstrip patch antenna for Z; =50 and f, = (7.
{a) ¢, = 0° (b) o = 45°. The parameters are: s = SO0.13mm. ¢ = 61.22 mm.
p= ASTmm, h=3.2mm, ¢, =255, tan 6 =0.0018. ¢ =0.635mm. h=2.095mm.
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Held couples approximately egnalliy 1o the hrst vwo modess Tn Freo B we show vecno
plots of the real and 1maginary parts of the patch enrrent density for the case of
Fig. 12a. at a frequency f= 1191 GHz, wlnchi corresponds to the it peak of the 7
curve. We note that near the coax probe the imaginary part of the cnrrent densny s
directed towards the feed point. as expected.

The results presented in Fies. 12 and 13 were obtained using o PiG-element model
of the pentagonal patch (which can be seen in Figo 130 and a three element maodel
of the coax probe. The resulting size of the global impedance nacein in o was
220-by-220. The computation time was nnder 10 minates per frequency point on i

4836 PC running at 25 MHz.

5 Conclusion

We have developed an elegant and eflicient integral equation approach for the RCOS
computation of coax-loaded microstrip patch antennas of arbitrary shape with snb-
strates that may be electrically thick. The method has been vatidated for rectanentar
and circular patch antennas. for which results are available in the literature. New ROS
results have also been presented for a pentagonal microstrip pateh antenna designed
to radiate a circularly polarized field from a single coax feed. With the approach pre-
sented here. microstrip patch antennas of various. possibly irregular shapes. embed.
ded in a multilavered uniaxial substrate. may be analvzed within a single theoretical
framework. using the same computer code.

A limitation inherent in this approach 1s the assumption of a laterally infinite <ub-
strate and ground plane. Although the patch current distribution is rather insensitive
to the finite substrate and ground plane effects (assuming that 4, < 90°). the same
cannot be said of the scattered field (and RCSI. especially for 0. approaching 907,
where the diffracted field from the edges of the substrate and ground plane may be
the dominant contribution to the far field of the antenna. Also. the back lohes of the
radiation pattern obviously cannot be predicted based on the infinite ground plane as-
sumption. One way to remedy this is by using hvbhrid technignes. which combine the

infinite-substrate integral equation method with the geometrical theory of diffraction
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Figure 13: Vector plots of the current density on the pentagonal patch antenna for
the case of Fig. 12a. at the frequency f=1.194 GHz. (a) Real part. (b) Imaginary
part.
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(GTD) [14] or the Fast Fourier Transform (FFT) method T3]

A Transmission Line Green’s Functions

The voltage 1, and current [, at a point = in the nth transmission line section con
taining a unit-strength current source ¢ at =’ as illustrated i Fig. 11 obeyv the

equations [27. pp. T47]

L . . . A

w‘——L(:g:’) = —jhk., 2, [{z]zh) 6H7
d:

(l, . . P P ’ :
e t(:lzl) = _J}“:n}v: Ll(:§: )+b(:~:> thNg
d:

where k., is the propagation constant. Y, (Z,) is the characteristic admittance {impe-

dance). and & denotes the delta function. For notational simplicity. we omit here the

)

o —> (2)
Zn Z, Zni»l

Figure 14: Transmission line section comprising a unit-strength current source.

superscript p {which stands for € or 2). and we do not explicitly indicate the depen-
dence of the voltage and current on the transverse wavenumber .. which determines
k.. through (15)-(16). From (67)-(63). Vi(z|z") within the nth transmission lne

section containing a source may be expressed in the traveling-wave form

Vi(z|2)) =

ol . . . i g 2k e ma )i
e"‘]“:niz“zll [1+ [‘n(so)e’-jzfi‘znh(—ﬂ)} [l+ [71(‘:[}}(.')2 s w\:
)

2}/;1 - T;(:O

;z( <0 )
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where z¢ =min(z.2"), 75 = max(z. ). 2y is an arbitrary reference point within the
nth section {(which is usually set to 2. or 2, . whichever i< more convenient i, and
[.(z0) and 1,(z9) are the reflection coeflicients “looking to the left” and lookine 1o

the right.” respectively. at zyp. By means of the translation fornimia

=

LT 2kt -5 -

Az = Ddzg) e Behentimmd IR

where the upper and lower signs correspond to the right and left arrows. respen

tively. these reflection coeflicients can be expressed in terms of the respective termt
R e R

nal reflection coeflicients [}, and I, which are related to the corresponding terminal

- —
admittances Y, and Y, (see Fig. 14} as

= y,-Y, = _1-T ]
in: = }u': )u—'”—"g 5‘1"
Y.+ Yo I+ T,

For a transmission line section of a finite length d,,. a particularly convenient form of
le ] N

(69) is

o 17 -

LT ;Ll_§_ rn (_szf:v:(:<‘~fn)§ Il* I '_‘»g,}:,)(;,“i_;)}:

p—
T—
0
T
—
i
-1
1w

9% hpeid
.2};1 l__ 1} lq ¢ ~2dkndn

which is obtained by letting =y =z, and using (70).

The voltage V.. and current /.. excited by a unit-strength voltage source . <atisfv
equations dual to (67)-(68). which are obtained from the latter by making the <nbsti-
tutions: V, = [.. [, - V.. Z, — Y..and },, — Z,. Furthermore. it can be shown that

the following symmetry and reciprocity relations hold (ef. [16. p. TH. 270 po 1910

Vi(z]z) = Vi Pz, 1 :%:') = [,/‘(:’E:). Vilzzhy= = Liz" o IR !
As a result. [.(z]z") can be obtained from (72) by replacing in the latter Y, by its
inverse (which causes the reflection coeflicients to change signsi. 1121z} follows from
(67) and (72), and V,(z|z') may then be obtained from the last relation in (731,

The voltage and current on the nth transmission line section that s source-free
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satisfv the homogeneous form of 1671 (685 From these equations. the voitise ot am
point z within the line section may be expressed in terms of the voltage Voo doross

one of 1ts terminal pairs. The result 1s

] ‘ (_,_._A‘"t.:— ::; o . .’
Vizr=Vizy) == {l“,* Voo ommen s ! Pl

where zg= 1z, or zg= 2,4, (see Fig. 1 depending ou whether the sonree s loeated 1o
the left or to the right, respectively. of the line section. and where the upper tlower:
arrow corresponds to = > 3y (2 < ;). We have omitted the subseript of Vi T
hecause the latter applies irrespective of the nature o the sonrce. and dropped =" from
its argument. because (74) only implicitly depeunds on the source location. which 1=
outside the nth line section. The current [(z} corresponding to 711 mayv be obtained
by substituting the latter into {67).

Finallv. we note that (70)-(71) are easilv implemented in a recursive computer
routine to determine the leftward and rightward reflection coefficients needed in (72
and {74). The computations proceed from the outward-looking reflection coetherents
in the top and bottom transmission line sections isce Fig. 31, Observe that the expo-
nential functions encountered in {T0). {72}, and (71) have nonincreasing magnitudes,
50 there is no danger of overflow. \When the nth transmission line <cction extends to
positive (negative) infinity along the = axis. the reflection coefficient T iis st to

zero in {72} and (T1).

B Fourier Transform of a Triangle

Shape Function
The Fourier transform of a shape function [, associated with a triangular element &
Is given as

L = / L. (~’k"'p ds Y

where k, = uk,. To evaluate the integral in (75). it is helpful to first convert 1t fo

4 1

a line integral around the boundary contour. d~,. of S, (of. {1710 0INL 1195, This s
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X6
most easily accomplished by noting that 50
k L kop
¢’ “vaf(u ‘‘‘‘‘ ﬁ) v
gk,
and by making use of the divergence theorem. As a resulto when £ 200 we obagn
. ! o . kop o ——
L= ———¢ (kAL ~v- €™ FPu-ndi

2ARS T

where ¥ = 2 x @ and n denotes a unit vector normal to N, at i in the plane and
pointing out of 5,. The integral in (77 1s easily evaliated in the local coordinates,
if one notes that when fisonedge . n=n,. 0< L, <. L, =0, [ =1 -1, and
df ={,dL; (see Fig. 1). Also. in that case p=p,+@,. where g 1= a vecror from node
j to the point ¢ on edge ! of the element. The resulting closed-form expression for 1,

is given in (63).
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WAVEGUIDE EXCITED MICROSTRIP PATCH
ANTENNA - THEORY AND EXPERIMENT

M.-H. Ho, K. A. Michalski, and K. Chang

Electromagnetics & Microwave Laboratory
Department of Electrical Engineering
Texas A&M University
College Station, Texas 77843-3128, USA

ABSTRACT

An arbitrarily shaped microstrip patch antenna excited through an arbitrarily shaped
aperture in the mouth of a rectangular waveguide is investigated theoretically and
experimentally. The metallic patch resides on a dielectric substrate grounded by the
waveguide flange, and may be covered by a dielectric superstrate. The substrate {and
superstrate, if present) consists of one or more planar, homogeneous layers. which
may exhibit uniaxial anisotropy. The analysis is based on the space domain integral
equation approach. More specifically, the Green's functions for the layered medium
and the waveguide are used to formulate a coupled set of intcgral equations for the
patch current and the aperture electric field. The layered medium Green'’s function is
expressed in terms of Sommerfeld-type integrals and the waveguide Green's function
in terms of Floquet series, which are accelerated to reduce the computational effort.
The coupled integral equations are solved by the method of moments using vector
basis functions defined over triangular subdomains. The dominant mode reflection
coefficient in the waveguide and the far field radiation patterns are then found from
the computed aperture field and patch current distributions. The radar cross section
(RCS) of a plane-wave excited structure is obtained in a like manner. Sample numer-
ical results are presented and are found to be in good agreement with measurernents
and with published data.




913
1 Introduction

Microstrip patch antennas, which belong to a large class of printed cirenit antennas.
are widely used in the microwave frequency range. both as single elements and (more
often) in array configurations. Their advantages are well known: low cost, conformity.
ease of fabrication and integration, reproducibility, ruggedness. light weight. and low
profile [1], [2]. In recent years, the utilization of millimeterwave systems, with smaller.
lighter components and antennas, has provided a wider bandwidth, and consequently
higher data rate communication and better resolution than microwave systems {31
[4]. However, the feed structures that operate well at microwave frequencies are
not always viable in the millimeterwave range. For example, microstrip line losses
become significant and coaxial feed components are not available above about 50 GHz.
which renders the direct feed techniques impractical in this frequency range. On
the other hand, since the waveguide bulkiness becomes less of a factor, while its
losses remain smaller than those of a microstrip line [3], the indirect waveguide feed
becomes an attractive option for millimeterwave antennas and antenna arrays [6].
Moreover, in some applications the aluminum waveguide may also serve as a heat
sink and support for active devices that may be integrated with the antenna. Another
antenna configuration that possesses the advantages listed above is a waveguide-fed
slot antenna. Its gain, however, is significantly lower than that of a waveguide-excited
microstrip patch.

In this paper, we present a rigorous integral equation analysis of a waveguide-fed
microstrip patch antenna, as illustrated in Fig. 1. The arbitrarily shaped microstrip
patch is coupled to the rectangular waveguide through an aperture, which may also
be of arbitrary shape. The dielectric medium above the ground plane may consist of
one or more planar, homogeneous layers, which may exhibit uniaxial anisotropy. The

nth layer is characterized by the permittivity and permeability dyadics
€,

=Lem+ 226 p =Lpm+ 224 (1)

where I is the unit dyadic transverse to z, and € (pen) and €.n (#:n) denote, respec-

tively, the transverse and longitudinal dielectric (magnetic) constants relative to free

2
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Figure 1. Geometry of a waveguide-fed microstrip patch antenna.

space. Observe that we distinguish dyadics by double underlines and unit vectors by
carets. The free space permeability and permittivity will be denoted by u, and ¢,
respectively. For each layer, we also introduce its electric and magnetic anisotropy

ratios, »¢ and »!, respectively, given as

CZ Zn
vi="= ==t (2)

n
€tn Hin

The structure is excited either by the dominant (TE,¢) waveguide mode or by a plane
wave incident in the upper-half space. The primary quantities to be computed are
the aperture field and patch current distributions. From these, other quantities of
interest will be found, including the dominant mode reflection coefficient, the far field
radiation patterns, and the radar cross section (RCS). Although attention is limited

to a single antenna element, it is expected that the results of this study will also be
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useful in the analysis, by an approximate technique, of finite wavegnide-fed anterua
arrays.

The remainder of this paper is organized as follows. In Sec. 2 we formulate coupled
integral equations for the patch current and the aperture electric field. where the
latter is represented by an equivalent magnetic current. The kernels of these iutegral
equations arc expressed in terms of the voltage and current Green's functions of
a transmission line network analog of the lavered medium, which is discussed in
Appendix A. In Sec. 3 we give the numerical procedure for the solution of the integral
equations. and in Sec. 4 we describe the experimental verification of the theory. We

present sample computed and measured results in Sec. 5, and give conclusions in

Sec. 6.

2 Formulation

2.1 Integral equations

To facilitate the analysis of the structure shown in Fig. 1, we invoke the equivalence
principle [7] to in effect decouple the original problem into two simpler ones. referred
to as the ‘interior’ (inside the shorted waveguide) and ‘exterior’ (above the ground
plane) problems, as illustrated in Fig. 2. This decoupling is achieved by first shorting
the aperture S, through which the two regions interact, and then placing over it an
equivalent magnetic current Mg, which represents the tangential electric field in the
aperture. The negative of M is placed on the opposite side of the shorted aperture.
thus explicitly enforcing the continuity of the tangential electric field across S,. In
the equivalent problem, the effect of the metallic patch S, is replaced by an equivalent
electric current Js.

The conditions of vanishing tangential electric field on the patch (which is assumed
to be perfectly conducting) and continuity of the tangential magnetic field across the

aperture may now be stated as

ix [Ey(r)+ Ei(r) =0, €S, (3)
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Figure 2: Problem equivalent to that in Fig. 1.

i x [Hy(r)+ Hy(r)] = 2 x [H(r) + H (r)]. res, (4)
where the subscripts + and — refer to, respectively, the exterior and the interior
regions, r is the position vector, (E', H') are the the ‘short-circvit’ electric and
magnetic fields of known sources, computed in the absence of the patch and with the
aperture shorted [8], and (E°, H") are the ‘scattered’ fields produced by Js and M.
Rearranging (3) and (4), we obtain

—:xE\(r)=2xE\(r), T€S, (5)
— 2 x [Hy(r) = H' (r)] = £ x [H\(r) - H(r)| . res, (6)
The scattered fields in (5)-(6) can be expressed in terms of the dyadic and scalar

kernels of the exterior and interior problem as [9]

Bi(r) = - [ GAr|v)-ds(p)dS' =V [ GH(r|r)V" Is(p)d5"

-1
P—

+ [ GE(ri7)- Ms(p)dS (

Hi(r) = [ G"(r|r)-Js(p)dS' ~ [ GFr(r|r)-Ms(p)as’

p

3




g7
—V [ (e YV Ms(phdy N
Sa
Hi(r) = [ G"™(r|r) M(pias
+ V[ G P9 Mt ') A 9

where primes indicate source coordinates and p is the projection of r on the ry plane.

Upon substituting (7)-(9) into (5)-(6), we obtain a coupled set of integral equations
for the unknown equivalent currents Js and My, given as

A, ! "0 EM . g o .

(G} J5>Sp +V (G, V- Js), —(GFM  Ms) =Ei (r), res,  (10)

' /
Sp S
<%HJ; JS>S; - <gtm + G Mg>;a

~V (G + G VM) = H(r) - Hi_(r). rES, (1)
Here, we have introduced the notation (; ) for an integral of a product of functions
separated by the comma. The dot over the comma signifies a ‘dot product’ of vector
arguments, while the prime over ) indicates that the integration is over the primed
coordinates. The subscript ¢ distinguishes components transverse to z. and the sub-
scripts 5, and S, indicate the integration domains (see Fig. 2). The dvadic kernels
in (10)-(11) are given as [9]

Gl(r|#') = LGA(r|7) (12)
EM n __ =4 Ao o, ’
GM(r|v) = (2% ~ §§)CEM (r |+
+EYGL(r|0) + §2CLN (r|7) (13)
G (r|v) = (—&& + §§)GEM(r'|7)

—&yGEM (r'|r) - §2GEN (v | 7) (11)

GP(r|v') = LGE (r |7 {15)

==t

6
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and the scalar kernels are given as

G4(rir') = So { ALY z‘z'); Vil :IZ')}

1) = a2 L) k1)

<! G-z a—x e _Ih
Gﬂ—(r|r') = l:fng%') +f"(my' )+f"("b‘_,, +Fn(;‘:; )] {[ (kﬂ l Az[ (Lp sz

In the above, we have introduced the Sommerfeld integral notation

Se i)} = 5 [ SR OK  dky, n =0, 1.2

EL:

Pt

{19
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e et o+ e T Il v
£ = \/[r —~ 4y 7). o= arctan (i{‘w«f—’(w) (29}

ro-r

where J,, is the Bessel function of order n. and the Floquet series notation

ELD tpy = = St ge o2y Y 0,

Prnn

with

R . [ mw ni ]
kpm“ = k't"\z + kyv)yY kpmn = kfzm + k}f"‘ k_!'m = T' A;—{"‘ = ;T 4“)’

.
Here, A, = d.d,, with d; = 2a and d, = 2b, where ¢ and b are the inner waveguide
dimensions along the r and y directions, respectively. The symbols V7 and 1% in (17)
(26), where p stands f.r ¢ (£ mode) or h { H mode) and a stands for : (current source)
or v (voltage source), denote, respectively, the voltage and current transmission-line
Green'’s functions discussed in Appendix A. The four series in (22)-(23) and (26) arise
from the multiple images of a transverse magnetic dipole in the walls of a rectangular
waveguide.

Once the current distributions Js and M are determined, the secondary quan-
tities of interest, such as the waveguide dominant mode reflection coefficient at the

aperture, the far zone field radiation pattern and the RCS. can be found with little

extra effort.

2.2 Short-circuit incident fields

In the driven antenna analysis, the incident electric field in the air-filled waveguide is

taken to be that of the dominant TE,y mode (we assume that @ > b), and is given as

E2(r) = Voero(p)e™ /" (31)

.2 T\ 2 .
ew(p) = y\/;gcos(%{) v kao = \[k2 - (;;) (32)

where k, = /Jio€, is the free space wavenumber. This incident wave excites the

with

short-circuit magnetic field, whose transverse component is

Hi,(") = YoVohio {1— .[—?xo(z)] e Ika0” (33)

8
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with
R . k.
h’l(}(p) = z X €. Yio = m-_L;_{ 1Y
.

where 1, = \/p./¢€, is the free space intrinsic impedance. In (331, ['jy(=) 15 the
dominant mode reflection coeflicient in the short-circuited waveguide, which assumes
the value —1 at = =

In the RCS analysis, the structure is illuminated by a uniform plane wave field

E(r) = (8.E) + ¢, k) eMlpsindimontemanl et cosd] (35)

-
-

impinging from the direction (,, »,) on the grounded layered medium from the upper
half-space. which is assumed to have free space parameters. Observe that in {35)
the phase reference point is chosen at (0,0,d), where d is the z—coordinate of the
uppermost interface. This plane wave is the source of the short-circuit electric field.

whose transverse part is given as
Ei,(r) = [p.V(k: 2 1) + @ V(K | d)] %P (36)

where k; = i)ik;, with k; = k,sinf;. In the above, VP(k}; z | d} denotes the voltage
on the respective transmission line analog of the layered medium. excited in the

uppermost section by the voltage waves
V(s 2| d) = cos 0, k etz deost (37)

VE(K; 2| d) = ELekelemdeosds (38)

propagating in the —z direction. The transverse short-circuit magnetic field associ-

ated with (36) may be expressed as
s - A'Ih ki, 2 d) — & _Ic ks ld Jk;-p 39
t,+(r) - pl ( p*“l ) (Px ( pi“l ) € (" )

The voltages and currents in (36) and (39) can easily be found in any transmission

line section, as discussed in Appendix A.




2.3 Secondary quantities

From the equivalent currents Js and M. other quantities of interest mav casily be
obtained. Hence, for the driven antenna we compute the dominant mode aperture

reflection coefficient I' and the corresponding normalized aperture admittance Y .

given as
. 1 .1 =T .
l = ‘/:) <1"IS; hl())S,, ~1 ' = | + I‘ RN

For the plane-wave excited structure we also compute the dominant mude aperture
transmission coefficient. given as

My hy)g
T=- (M < P, (1l

JIE I+ 1B

For either excitation, the far zone fields in the direction (6., 2,) are obtained as

+

B~ =g zenilrmdontd {V.-’(k:;di Wb, (Is(e). ok P7)

27r Sp
+1cos 0, I5(k d|0)@, - <]\/[5(p'), elk:‘p’> } (12)
Sa
_Jke '

Ej ~ ¢ Iholrmdeoste) {cos 0,VA(kS d|h), - (Js(p') ek P‘)

27r 5,

nlb (ks 05, (Ms(el), K P) Y (3

r

where p, and @, are the radial and azimuthal unit vectors evaluated at (8,.,). and
k; = p,k2, with k2 = k,sinf,. It is assumed in (42)-(43) that the aperture is in
the z = 0 plane and the patch resides on a substrate with thickness h. Observe that
(42)-(43) include contributions both from the patch and the aperture.

For the plane-wave excited antenna we also compute its monostatic RC'S. Hence,
if the incident field in the upper half-space is polarized in the u direction and the ¢
component of the scattered field is considered, the RCS of the antenna is given as [4]
2 [ESI°

ik

[t should be noted that the scattered field in the above does not include the plane

Oy = 477 (44)

wave (geometrical optics) field reflected by the layered medium.
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3 Numerical Procedure

3.1 Weak form of the integral equations

The method of moments (MOM) is applied to the weak forms of (10) and i 1. which
are obtained by testing them with suitably selected weight functions {4, } defined

over S, and S,. As a result, upon using the Gauss theorem [10. p. 5031, we obtain

<Am,<6” JJ > <V1'Am < Vi J$>5p>\

Sp

- <Am;<§f‘":1\’fs> > = <Am. t+> {(13)

<A <GHJ Js > > <Am; GHI + G- ]Ws>; >

+ <V¢ A (G + G VZ‘M5>; >

~
a/s,

=(An: Hy, - Hi_) (46)

Here, the incident fields E‘,"+ and H’;y+ are absent when the waveguide aperture

reflection coefficient is calculated, and H _ is zero in RCS computations.

3.2 Patch and aperture current expansions

As indicated in Fig. 1, we model the microstrip patch S, and the aperture S5, by
triangular elements. The nodes of each triangular element are assigned indices 1. j.
and k in a counterclockwise direction, as illustrated in Fig. 3. The sides of a triangle
are formed by three edge vectors, £;, ¢,, and €;, where £, is oriented from node ; to
node k. The position of the ith node with respect to the global coordinate origin is
specified by the vector »;, whose projection on the zy plane is p,. Since the microstrip
patch and the aperture each lie in a z = constant plane with z known. the location
of an arbitrary point within an element may uniquely be specified by its radial vector
p = p, + o,, where p, is the local position vector originating at the ith node of the

element. As indicated in Fig. 3, the three local position vectors further divide the

11
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Figure 3: Local coordinates associated with a triangular element

element into three triangles, where the area of the triangle opposite node ¢ is denoted
by A;. To facilitate the integration over triangular domains, encountered in {5)-{16).
we introduce for each triangle a ‘natural’ coordinate system (L,, L,, L¢}. where [;
is known as the ‘area coordinate’ or ‘shape function’ associated with node 1 of the

element [11, p. 110], and is defined as

A,‘ 3
s = T L‘ g 47
L 1 z,=E 1 1 (47)

where A is the triangle area. In terms of the area coordinates, the local position

vector @, may be expressed as
0. =4L; — €Lk (13)

To represent the patch and aperture currents on each triangular element, we introduce

a vector basis function A;, given as (cf. [12])

A=2 (19)
24

Noting that the gradient of the shape function is

A .
ViL; = “hi (50)

12
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G4

where n, 1s a unit vector perpendicnlar 1o edge 7 the plane and pointing ont of e

triangle element {see Fig. 3). we find the divergence of A, as

Vt'l"g =

! -
I Pond
We also find that n, - A; is constant on edge i, which makes it casv 16 enforee the
continuity of the normal component of current density between the elements that
share this edge. The patch current density and its divergence on each element may

now be approximated as

3 3 g
Js =Y LA, VoJsg=) = (52)
1=1 1=
where I; is the electric current leaving the element through edge .. Similarly. the

aperture current density and its divergence on each element are approximated as
2 SR
Ms =) KA, V.Ms=)Y " (53)
=1 =1 4

where K, is the magnetic current leaving the element through edge :.

3.3 Global system assembly and solution procedure

The testing functions in the integral equations (45)-(46) are drawn from the same sets
as the basis functions used to represent the patch and aperture currents. Hence. {A,,}
consists of AE"), withz =1,2,and 3,and n = 1,---, N,, where V, is the total number
of triangular elements of S, and S,. In the above, it was necessary to introduce the
superscript n to distinguish the local basis functions associated with element n. In
what follows, where there is no danger of confusion, this element superseript will be
omitted for notational simplicity.

When the expansions (52)-(53) are substituted into the integral equations (13) -
(46), the coefficients I!™ and K™ are constrained by the boundary conditions, which
require the continuity of the normal components of Js and Mg across the edges
shared by adjacent elements, or their vanishing at the boundry edges of S, and S,.

respectively. lf the numbers of the non-boundary triangle element edges on the patch

13




and the aperture are denoted by V, and Noorespectivelyand the rotal numb v ol the
unknown current expansion coetficients by Vo then N = N+ V0 A wresait of thas

procedure, the coupled integral equations (131 116} are converted into an algebrai

system
(o ip f (g ] T '1
§ I Lo i Py 5 LT -,
e Pordd
i o AR Iy
{l)mng ’r)"i" [ il\'d ’1”"‘3 }
Here. the V-by-V systemi matrix consists of four submatrices, where 2.0 is the

N,-by- N, global impedance matrix, [T, is the Np-by- N, global coupling matyix,

[Don] = = {T,,m}’[’. where the superscript [ indicates the matrix transpose, and (Y.,
is the .V,-by-V, global admittance matrix. The V-by-1 vector of the unknown current
expansion coefficients in (34) comprises the V,-by-1 global vector (1, of patch current
coefficients and the N,-by-i global vector [A] of aperture current coetlicients. The
N-by-1 global excitation vector consists of the Vp-by-1 global patch voltage excitation
vector [Vi,] and the N,-byv-1 gi ‘bal aperture current excitation vector {11},

To assemble ihe global system (54), we consider one source element-test element
pair at a time. Fach such pair will in general contribute to nine elements of the
global system matrix. it is convenient to view these contributions as the entries of
a local 3-by-3 system matrix corresponding to the element pair. bFurthermore. each
element will in general contribte to three entries of the global excitation vector,
and these contributions may be assembled inte a local 3-by-1 excitation vector. To
b~ more specific, let the global indices of the source and test elements be n and m.
respectively. Also, suppose that bsth elements are on the microstrip patch. Then.

the associated local system will take the form

(20 7] = V™) (35)

1t t t

where [Z{™"] is the local impedance matrix. [I™)] is the local vector of current coeffi-
cients, and [V,fm’] is the local voltage excitation vector. Here, the primed local source
element indices ¢’ ', and k' follow the same cyclic convention as the unprimed ones.
Observe that there exists a unique mapping between the local coefhcients {11y of
each element and the global current coefficients {/.}. where the relerence directions

of the latter are specified by the order in which the element nudes appear in the input

14
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geometry data. This mappinz determines to which entries of the global svstem (34
should the elements of (33) be added. and with what signs. Local systems similar to
(35) arise when both the source and test clements are in the aperture. and when one
of them is un the patch and the other in the aperture. Below. we describe these local
systems 1n more detail.

Consider first a test element, §*. on the patch. Then, if the source element, 57

is also on the patch, the entries of the resulting local impedance matrix are found as

mn 4 1 ! -
Zi(l‘ ) = < <C';1.. s > - “_!<(;O’ *I_'> (,‘)(_))
Fhsp A ALy [opn

If, on the other hand, the source element, 57 is in the aperture, there results a local

coupling matrix, with the entries given as
( EM ! e
Txvit"n) = <A,': <§-—t : A‘I>S{,‘>Sm (A,);)
P

Each patch element also contributes a local voltage excitation vector, whose entries

are
vi™ = (A Bi L) . (58)

Next, consider a test element, ST, in the aperture. Then, if the source element.
57, is on the patch, there arises a local coupling matrix, which may be shown (from
reciprocity considerations (7, pp. 116-120]) to be the negative transpose of the cou-
pling matrix given by (57). If, on the other hand, the source element, S7. is also in

the aperture, there arises a local admittance matrix, whose entries are given as

Yo = v 4y (59)
(mn) _ F. ) ! _ _1_ J 3_>I
Yu + T <A <G“+' ! A',>S;‘>g! <A ’ <G " A g> - (60)
mn) _ [ a tar-. AN\ _i_< 9 L>'
v = (A (@A) <A. ) (61)

Finally, each aperture element also contributes a local current excitation vector, with

the entries

n™ = (A H,, - H;_)

™m
“a

(62)
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The integrals over source coordinates in (56) and (60) (61) involve kernels that
are singular when the test and source elements coincide. These singularities are ex-
tracted and integrated analytically [13]. leaving well-behaved integrals over triangular
elements. which are numerically evaluated by a Gaussian quadrature [11. p. 113}, On
the other hand. the testing (exterior) integrals in (56) and (60) (61). as well as the
integrals in the excitation terms {38) and (62), have regular and slowly-varying 1nte-
grands, and may thus be approximated using a one-point quadrature rule {12]. For
example, the integral in (56) is approximated as

{m)

<Ae; (G2, . Au>;§>$;" ~ -9——,-— A{GLM ) Avlp)), (63)

where an) and r!{™) denote, respectively, the local (with respect to node :—see Fig. 3)
and global position vectors of the centroid of element 57*. This one-point approxima-
tion results in significant savings in th..- computational effort, even though it sacrifices
the symmetry properties of the impedance and admittance matrices. The integrals
appearing in (57) have regular, but rapidly varying kernels (which represent electric
field, rather than potentials), especially when the substrate between the microstrip
patch and the aperture is electrically thin. For this reason, both the interior and
exterior integrals in (57) are evaluated by Gaussian quadratures without further ap-
proximations.

Once the complex-valued matrix equation (54) is assembled and solved, which is
accomplished by standard procedures (LU factorization with partial pivoting, followed
by a forward and back substitution [11, p. 120]), the current density within each

triangular element may be obtained from (52) or (53).

3.4 Evaluation of spectral integrals and Floquet series

For the solution procedure described above to be practical, the Sommerfeld-type
spectral integrals that occur in (17)-(21) and (24)-(25), as well as the Floquet series
that appear in (22)-(23) and (26), must be efficiently evaluated. To accomplish that,

the Sommerfeld integrals are accelerated by asymptotic integrand subtraction and

16
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the method of averages [11]. In addition to these techniques, an interpolation aud
table look-up scheme is implemented to further reduce the computation time {15,
The integration path is properly deformed to avoid the integrand singularities. which
occur on or near the real axis in the &, plane [16].

The Floquet series are accelerated as well, by a combination of the Kummer
and Poisson transformations [17]. As a result of this procedure, the original slowly
convergent Floquet series is converted into the sum of an accelerated spectral series
and an exponentially convergent spatial series. Observe that in (61) these series are
integrated against the basis functions over the source and test triangular elements.
The source element irtegrals are introduced inside the spectral sums and evaluated
analytically [17, pp. 107-114}, thus further accelerating the convergence of these series.
The same integrals over the spatial series are evaluated by a Gaussian quadrature, as

discussed in Sec. 3.3.

3.5 Far field and RCS computation

Once the coefficients [; and K; are found for each element, the current expansions
(52)-(53) are substituted into (42)-(43) to determine the far zone fields. The integrals
encountered in (42)-(43) are then recognized as Fourier transforms of the vector basis
functions (49), evaluated at k, = k;. In view of (49) and (48), the Fourier transform

of A; associated with a triangular element S, may be expressed as
/ii <A; 3 e‘ikp~P'>,

= 5%— (lkLJ' - t]‘Lk) (64)

where the L; denotes the Fourier transformed shape function L;. Upon using the

procedure of Appendix B, we may express L; as

. b; 3 . k
T = : v]o uk ~RePey
2Ak‘;2 = b J (a P/2)e
_P.Z_ s la.k 12 — 11.(a.k ikp'pc
5% (1(a;k/2) ~ jio(ak,[2)] &% Fes
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be . 3 g ukp -
® ‘“,’)‘FUI((U\’A})/-)+J].;(Uk‘\;./2)}t’ w P (h)
“Rp
where p., is a position vector of the midpoint of edge i of the element. «, = u - €,

by = v - £, and j, denotes the spherical Bessel function of order n. We note that
k (63) is evaluated for k, = k7, as is required in (42)-(43). then k, = k. & = p . and
v = @,. It can be shown that (63) approaches a finite limit A/3 as &, — 0.

Once the microstrip patch and the waveguide aperture contributions to the far

zone fields are determined, the RCS is readily obtained from (+44).

4 Experimental Setup and Measurement Proce-

dures

The experiment was done in X-band, rather than in the millimeterwave range. to
reduce the effect of fabrication tolerances on the results. The components of the
measured structure are shown in Fig. 4. Circular and rectangular microstrip patch
antennas were investigated, each excited through a waveguide-backed concentric rect-
angular slot, as illustrated in Figs. 5a and 5b, respectively. The substrate and super-
strate materials used in the experiment (and also in the numerical examples presented
in Sec. 3) are non-magnetic and isotropic. Therefore, the nth layer may conveniently
be characterized by a complex number ¢,(1 — jtané,), where ¢, is the real relative
dielectric and tan 4, is the loss tangent. The substrate used in antennas of Fig. 5 has
€; = 2.2, tané, = 0.001, and thickness A = 3.15mm. The cover layer, if present.
is made of the same material with thickness ¢ = 1.57 mm. The microstrip antennas
were mounted on the waveguide flange using plastic screws (see Fig. 4).

The dominant mode reflection coefficient T', referred to the aperture plane. was
measured using the HP-8510B network analyzer. Prior to the measurement, the
thru-reflect-line (TRL) two-port calibration method [18] was used to eliminate the
systematic errors due to the coax-to-waveguide adapter and to establish the mea-
surement reference plane (MRP) at the aperture location. In order to implement the

TRL calibration procedure, three sets of measurements, referred to as thru, reflect,

18
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Figure 4: Components of the measured structure.

19

110




Figure 5: (a) Circular and (b) rectangular microstrip patch antennas used in the mea-
surements. Each antenna is fed through a waveguide-backed concentric rectangular

slot in the ground plane.
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Figure 6: (a) Thru, (b) reflect, and (c) line (delay) standards used in the HP-3510B

TRL calibration procedure.
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and line (or delay) were taken. The thru, reflect, and line calibration standards were
fabricated from four WG-90 waveguide segments, as illustrated in Fig. 6. The thru
was arbitrarily selected to be 84.2mm long (the length of the thru should be at least
two guide wavelengths, to reduce the interference between the coax adapters), which
resulted in the reflect length of 42.1 mm. A waveguide feed of the same length was
used in the actual measurements (see Fig. 4), to ensure that the MRP coincides with
tne aperture plane. Because no two coax adapters are identical, two reflect standards
were fabricated and used in the HP-8510B caiibration, as indicated in Fig. 6b. The
line {delay) was made 9.9 mm longer than the thru. This 9.9 mm length difference
between the thru and the line, which at the center frequency f. = 10 GHz is approx-
imately a quarter of the guide wavelength A, = 39.7mm, results in a time delay of
24.94 ps, and this value was keyed into the HP-8510B network analyzer during the
TRL calibration procedure.

The procedure for the far field measurement is rather standard. and is not de-

scribed here to conserve space.
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5 Sample Computed and Measured Results

In this section we present sample computed results obtained using a computer pro-
gram implementing the procedures developed in Sec. 3. For several antenna confign-
rations. these results are compared with the corresponding measured data obtained
by the experimental procedures described in Sec. 1. Although no published results
were available for comparison for waveguide-backed microstrip patch antennas. every
effort was made to validate at least the most important modules of the developed
computer code against independently obtained data. First, the part of the program
that deals with an arbitrarily shaped microstrip patch on a grounded substrate {in
the absence of the aperture) was extracted and used to compute the scattering char-
acteristics for rectangular patch antennas on both isotropic and uniaxial substrates.
The computed RCS results were found to closely agree with those published by New-
mann and Forrai {19] and Pozar [20]. Second, the part of the code that deals with
the aperture was isolated and used to compute the RCS of a narrow slot in a ground
plane. This problem was then related via the B binet’s principle [21, p. 500] to that
of a thin wire scatterer with equivalent radius [22], and the latter was analyze using
a commercial code PCAAD [23]. Again, close agreement between the corresponding
RCS results was observed. Third, a stripped down version of our program, which did
not include the microstrip patch part, was used to analyzed a rectangular waveguide
radiating through a centered rectangular slot into a half-space. The computed equiv-
alent magnetic current in the aperture was found to closely agree (both in magnitude
and phase) with the corresponding result obtained by Harrington and Mautz {24,
Fig. 15a]. Finally, a rectangular waveguide radiating through a centered rectangular
aperture covered by a dielectric layer was analyzed. For this problem, in Fig. 7 we
compare our aperture admittance results with the computed and measured data ob-
tained by Bodnar and Paris [25]. Although the agreement between the three sets of
results is judged to be good, we note that our data are closer to the measured results
than the data computed by Bodnar and Paris.

We next present measured and computed results for four waveguide-backed mi-

crostrip patch antennas with isotropic substrates, excited through a centered rect-
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Figure 7: Aperture conductance G and susceptance B normalized to the dominant
mode wave admittance of a flanged rectangular waveguide radiating through a cen-
tered rectangular aperture covered by a slab with dielectric constant ¢ = 2.25
and thickness A = 3.20l mm. The waveguide has dimensions a = 22.86 mm and

b=10.16 mm, and the aperture size is 0.7a-by-0.8b.
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Figure 8: Plots of (a) VSWR and (b) phase of I' for a waveguide-excited circular

patch antenna without a superstrate (Antenna 1).

angular slot by the dominant (TE,p) mode. The parameters of these antennas are
collected for easy reference in Table 1. Observe that Antennas 1 and 3 are circular
(see Fig. 5a), while Antennas 2 and 4 are rectangular (see Fig. 5b). Also. Antennas 1
and 2 do not have a superstrate, whereas Antennas 3 and 4 are covered by a dielec-
tric slab made of the same material as the substrate. In all cases the same X-band
rectangular waveguide (WG-90) is used, with the interior dimensions a = 22.86 mm
and b=10.16 mm. Referring to Table 1, observe that the largest discrepancy between
the computed and measured values of the resonant frequency, where the minimum of
the voltage standing wave ratio (VSWR) occurs, is 1%. Note also that the resonant
values of VSWR are close to one and, therefore, the antennas are nearly matched at
their resonant frequencies. Their bandwidths (BW in Table 1), however, are narrow
(which is characteristic of microstrip antennas) and do not exceed 5%.

The computed and measured VSWR and phase of the dominant mode reflection

coefficient (/') at the aperture for the four antennas are shown in Figs. 8-11. In
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Table 1: Parameters of sample waveguide-fed microstrip patch antennas.

B Antenna | 2 3 —?
Relative substrate ¢ 2.2 2.2 2.2 2.2
Substrate
thickness A (mm) 3.45 3.15 3.15 3.15
Relative superstrate ¢ N/A N/A 2.2 2.2
Superstrate
thickness ¢ (mm) N/A N/A 1.57 1.57
tané 0.001 0.001 0.001 0.001
Patch L,=14.0 L, =13.7
dimensions (mm) D,=140 | Wy, =117| D, =137 | W, =11.4
Aperture W,=140 | W, =140 | W, =13.7T | W, = 13.7

dimensions (mm) Lo, =0.3 L,=03 L,=0.3 L, =103

Measured resonant

frequency (GHz) 10.09 10.07 9.95 9.90
Computed resonant
frequency (GHz) 10.17 10.17 10.0 10.0
Error in resonant
frequency (%) 0.79 0.99 0.5 1.0
Measured gain (dB) 8.63 8.8 7. 8.2
Measured
lowest VSWR 1.22 1.137 1.114 1.013
Calculated
lowest VSWR 1.23 1.151 1.075 1.012
Measured BW (%) 4.0 4.24 4.74 1.92
Computed BW (%) 3.8 4.03 4.4 4.52
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Figure 9: Plots of (a) VSWR and (b) phase of T for a waveguide-excited rectangular

patch antenna without a superstraie {Antenna 2).
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Figure 10: Plots of (a) VSWR and (b) phase of T for a waveguide-excited circular

patch antenna with a cover layer (Antenna 3).
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Figure 11: Plots of (a) VSWR and (b) phase of I for a waveguide-excited rectangular

patch antenna with a cover laycr (Antenna 4).
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Figure 12: Resonant currents of Antenna 1. (a) Patch electric current (imaginary

Figs. 12-13 we show plots of the computed patch electric current and the slot magnetic
current for Antennas 1 and 2 at their resonant frequencies. Since these currents are in
general complex-valued, only the dominant part (real or imaginary, as the case may
be) is shown in each case. These figures also illustrate the triangular mesh models
used in the analysis. The circular patch of Antenna | and the rectangular patch of
Antenna 2 were approximated by 394 and 288 triangular elements, respectively. In
both cases the slot was modeled by 44 elements. For Antenna 2, this resulted in

a 451-by-451 global system matrix in (54), and a computation time of 15 minutes
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Figure 13: Resonant currents for Antenna 2. (a) Patch electric current (imaginary

part). (b) Slot magnetic current (real part of the longitudina! coraponent).
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per frequency point on a 12-MIPS computer. In Figs. 1115, we show the measired
and computed fai field patterns for the rectangular Antennas 2 and 4. The scallup
observed in the measured E-plane patterns is almost certainly caused by the surface

wave diffraction at the edges of the finite-size ground plane [26]. This effect is more

oo
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Figure 14: Measured and computed far field patterns for Antenna 2.
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Figure 15: Measured and computed far field patterns for Antenna 4.

pronounced for Antenna 4, because the superstrate increases the intensity of the

excited surface wave.

31




123

Finally, we present sample results for Antenna 2 under plane wave excitation.
In Fig. 16 we plot vs. frequency the magnitude of the dominant mode aperture
transmission coefficient T, where the latter is defined in (11). As expected. the peak
of transmission occurs at the resonant frequency of the waveguide-driven antenna

(see Table 1). In Fig. 17 we plot vs. frequency the monostatic RCS referred to | m*

m | ‘ T M T T T
o -

. —pnno _agO
s | §,=60°, ¢,=45°
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© St :
o - 4
2 — | :
32t 7
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8 10 12 14

f(GHz)

Figure 16: Magnitude of the dominant mode aperture transmission coefficient vs.

frequency for Antenna 2.

(the units are dBsm—‘decibels above a square meter’ [27, p. 160]) for a §—polarized
incident plane wave with Ej*° = 1 V/m. In addition to the total RCS of the antenna.
we also plot the contributions from the microstrip patch and the slot. We note that
the first RCS peak is clearly due to the first resonant mode of the patch. At the second
peak, which occurs near the resonant frequency of the waveguide-driven antenna, the
slot radiation is the dominant effect. We also note that there is an RCS minimum

between 10 and 12 GHz, caused by a destructive interference of the patch and slot
radiated fields.
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Figure 17: Monostatic RCS of Antenna 2.
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6 Summary and Conclusions

We have presented a rigorous integral equation analysis of a microstrip patch antenna
excited through an aperture in the mouth of a rectangular waveguide. or illuminated
by a plane wave. The substrate and superstrate may comprise anv number of isotropic
or uniaxial material layers. The patch and the aperture may both be of arbitrary
shape. Hence, waveguide-fed microstrip patch antennas of various. possibly irregular
shapes, residing in multilayer, possibly uniaxial media. may be analyzed within a sin
gle formulation, using the same computer program. The analysis has been validated
against experimental and published data. We have also shown that a good impedance

match may be achieved in this antenna configuration. but only in a narrow frequency

band.

Appendix A

Transmission-Line Analog of Layered Medium

In deriving the integral equations of Sec. 2.1, we have employed a transmission-line
network analog of the layered medium, in which each layer is represented by a trans-

mission line section, as illustrated in Fig. 18. This analog comprises two networks.
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Figure 18: Layered dielectric medium and its transmission-line network analogue.
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which arise from the decomposition of the electromagnetic field into two partial fields
that are transverse-magnetic (TM) and transverse-clectric (T1) to z. The quantities
corresponding to these networks are distinguished by the superscripts ¢ and A, re-
spectively. The characteristic impedance and propagation constant of the nth <ection

of the TE and TM transmission lines are given as

. | ke o | kh
A: = — = t‘n . Z; =R T — (661
} uf’ ’70 kt:n. } n #(n ,,U ku‘
= \/kge,num — k2/uk (67)

Let the network be excited by a 1A shunt current source located at =’ in the nth

line section of length d,. as illustrated in Fig. 19a. Then. the voltage V;(z | ') and

"—‘dn

Zn—- 'n+l
zn ! 1A kzﬂ zn-i»l

Zn—l! : —_>2
Zn T Z [
(a)

-+

1V ~v
Zn,- Zn Zn+l
kz'ﬂ,—f kzn kz.n+1

zn:l[ 2’ ] Zn —>Z
ZnTn  Zn Ta

Figure 19: Typical transmission line section with (a) 1A shunt current source and (b)

1V series voltage source.
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current [,(z{:') at a point = within this line section obeyv the egnations {25, p. 717
d . \ o e
:[:‘1(3!:’) = —J‘l‘,:n Zn IL(:%:) (6N
d Pt TN S AT P B ’ 4
'(Flz(:tz> = A'J moin ;(:j:)‘?‘h(:-:) o

where 8 denotes the delta function. Here and below. we omit the the superseript p
for notational simplicity. From {68) (69). Vi(z|z') may be expressed in the traveling-
wave form

7 —rkinlz—-7
[n ed anl !

HE) e T
. [1+ (Fn(:o)e‘ﬂkm(k-:o)] {1+ _ﬁl( :O)G—Jlkzn(b—to)} (70)

«— —
where z. = min{z.:'), =5 = max(z.z'), and ', (z,) an! [',(z,) are the reflection
coefficients ‘looking to the left’ and ‘looking to the right.” respectively. at any location
z, within the line section. Bv means of the translation formula

= =

Ta(2) = Ta(z,) e/2hente=) (71)

where the right and left arrows correspond to the upper and lower signs, respectively.
these reflection coefficients can always be expressed in terms of the terminal reflection

— —
coefficients, I', and [, which are related to the corresponding terminal impedances

7n and 7,, (see Fig. 19) as

=

E" Zn'—Zn -

e (72)
Lo+ Zy

The voltage V,(z|z') and current [,(z]z'), excited by a 1V series voltage source v
in the nth line section (see Fig. 19b), satisfy equations dual to (68)-(69). which are
obtained from the latter by making the substitutions: V; — [, I, = V,, Z, — Y,
and Y, — Z,. Furthermore, it can be shown that the following symmetry and

reciprocity relations hold (cf. [28, p. 194])

Vi(z|2) = Vi(2'|z), I(z|2") = L(2'|2), Vi(z]2) = = 1i(Z']2) (73)
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As a result, [,(z|:’) can be obtained from (70) by replacing in the latter ¥, by 7,
(which also causes the reflection coefficients to change signs). [,(z | ') follows from
(68) and (70), and V,(z{z") may then be obtained from the last relation in (73).
The voltage and current on the nth transmission line section that is source-free
satisfy the homogeneous form of (63)-(69). From these equations, the voltage at anv

point =’ within the same line section may be found as

) e?)km(:—%) =2 .
V(z) = V() ——z—— |14+ [a(z,)e®hemlm) (71)
L+ Talzs)
where the upper (lower) sign corresponds to = > z, (z < z,). In the above. z, = z, or

Zo = znp41, depending on whether the source is located to left or right. respectively. of
the nth line section. and V'(z,) is is the voltage across the line terminals at z = z,. We
have omitted the subscript of V in (74}, because the latter applies irrespective of the
nature of the source, and dropped 2’ from its argument, because (74) only implicitly
depends on the source location, which is outside the line section. The current /(z)

corresponding to (74) may be obtained by substituting the latter into (68).

Appendix B

Fourier Transform of a Triangle Shape Function

The Fourier transform of a shape function L; associated with the nth triangular

element is given as

j.o— R Jkp'p —
L;—/;nL,e ds (73)

where k, = #k,. To evaluate the integral in (75}, it is helpful to first convert it to
a line integral around the boundary contour, 95, of S, {cf. {29], [30]. [31]). This is

most easily accomplished by noting that

. ,J’kp'p
kP v, (1}, ¢ ) (76)

J kp
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L= f (2 AL+ -8R Py fyar (77

where ¥ = z x @ and ® denotes a unit vector normal to 95, at { in the plane and
pointing out of S,,. The integral in (77) is easily evaluated in the local coordinateds.
if one notes that when fisonedget, n=n, 0< Ly <. L, =0. L, =1 = L. and
d€ = £;dL; (see Fig. 3). Also. in that case p = p, + g,, where g, is a vector from
node j to the point £ on edge 1 of the =lement. The resulting close-form expression

for L; is given in (65).
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Analysis of Multiconductor Transmission Lines of Arbitrary
Cross Section in Multilayered Uniaxial Media®

})_\‘

Chung- I G. Hsu'. Roger . Harrington”. Krzvsztof X Michalski®, and Dalian Zheng

Abstract - A mixed-potential electrie field integral equation is fornmlated and
applied in conjunction with the method of moments 1o anaivze a transmission-hine
system consisting of multiple conducting strips of arbitrary cross section erhedded
in a stratified medium with or without top and/or bottom ground planes. Fach laver
of the medium is possibly uniaxially amisotropic. with its optical axis perpendien
lar to the dielectric interfaces. Compnuted dispersion curves and modal currents are

presented and. when possible. are compared with data available in the literature.

1 Introduction

Recent advances in integrated circuit technology have made microstrips. striplines.
coplanar strips. and similar wave-guiding structures attractive not only i microwave
and millimeter-wave applications. but also in high-speed digital computers. The con-
ductors used as interconnects between 1'L5/ devices may be very close to one another.
which necessitates treating them as a single transmission line capable of supporting
several modes. rather than several isolated transmission lines. The interconnects in
modern microwave and millimeter-wave integrated circuits tend to have trapezoidal

cross sections due to etching undercuts or as a result of the epitaxial growth process

*This work was supported in part by the U.S. Office of Naval Research {ONR) under Contract
N00014-90-J-1197.

'(!. G. Hsu and R. F. Harrington are with the Department of Electrical and Computer Engineer-
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[1], [2]. and cannot always be considered infinitely thin. These interconnects are Sup-
ported by a dielectric substrate. which often exhibits uniaxial anisotropy, introduced
in the manufacturing process 3].

Many numerical procedures have been successfully applied in the past two decades
to obtain frequency-dependent characteristics of microstrips and striplines. but most
of them are only applicable to {or optimized for) planar conducting strips of zero
thickness (cf. [4]. [5]. [6]. [7]. (3]. [9]. [10]. [11]. [12]. [13]. (1), {15]. (165, (170 to name
just a few). Relatively few papers have considered laterally open microstrip structnres
with conductors of other cross section shapes. such as rectangular [I8]. trapezoidal
[19]. [20]. circular [21], [22], or rectangular with semi-circular edges [23]. The concept
of equivalent width has often been eraployed to approximately take into account the
strip thickness [24]. However, it has recently been demonstrated. using a rigorous
n-ixed-potential integral equation (MPIE) approach 119]. that the dispersion curve
for a finite-thickness microstrip lies below that of a microstrip with zero thickness.
which is opposite to what is observed when the concept of equivalent width is used.

In this paper, we use an MPIE approach. which was origirally developed for
objects in isotropic media [25], [19]. [26]. and recently extended 1. Lhjects in uniaxial
media [27], to analyze a transmission-line system composed of multiple conductors
of finite thickness and arbitrary cross section, embedded in a medium consisting
of an arbitrary number of planar, possibly uniaxially anisotropic. dielectric lavers.
Computed dispersion curves and modal currents for bound modes are presented and.

when possible, are compared with data available in the literature.

2 Formulation

The cross-sectional view of the structure nunder consideration is shown in Fig. 1.
The medium consists of NV planar, homogeneous dielectric layers. with the interfaces
parallel to the zy plane. Each layer, say the nth, is characterized by permeability y.,
and by transverse and longitudinal permittivities ., and z.,. resnectively, all relative
to free space. The top layer of the medium may extend to +22 along the = axis. or be

shielded by a ground plane made of a perfect electric conductor (PEC). Similarly, the
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Figure 1: Cross-sectional view of a multiconductor transmission line embedded in a

stratified uniaxial medium.
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bottom layer may extend to —ac along the = axis. or be shielded by a PEC ground
plane. There are .V, PEC strips embedded in the lavered medium. all uniform and
of infinite extent along the y axis, but of arbitrary cross section shape. An =" time
dependence is assumed and suppressed throughont.

Since we are interested in modes propagating in the y direction. we mayv assume
that the phase factor ¢™/9% is common to all the fields and currents. where 3 is the
propagation constant to be determined. Hence, we may express the surface current
density as

J(r)=J(€) e (1)

where £ is the arc-length coordinate on the contours of the conductor cross sections.
By enforcing the condition that the tangential electric field must vanish at the surface

of the conductors. we obtain an electric field integral equation (EFIE) of the form

N
—

Ne
i, X Z/ GF(z.2|a',2') J(€)dl =0. € Llpn=1.2-- N,
=1 4

where gEJ(z, z|z'z"), with z =z(£) and = = (), is the electric field dyadic Green's
function of the layered medium [27], and where 4, denotes an outward unit vector
normal to the boundary L, of the nth conductor. In the above and throughout.
primed quantities denote source coordinates. unit vectors are distinguished by carets.
and dyadics by double underlines.

The severe source-region singularity of the kernel of the EFIE (2) makes it un-
suitable for a direct application of the method of moments [28]. [29]. Hence. we first
transform it into the MPIE form,

N.

Un X Z {Az,2)+(Ve—970)0i(x,2)} =0, rel,.n=1012.--.N. (3}
i=1
where V, is the transverse (to y) part of the operator nabla. and wt »re

Air,z)= A KAz, 2|’ 2"y - J(€) d¥ (1)

and

d?,(a:,::)::/L Kz, =2, ') (V) — 9 j3) - J(F)dF' (5)
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| are the magnetic vector potential and the electric scalar potential. respectively. due
to the surface current on the ith conductor. These potentials are not unique. as
discussed in {30], [26]. [27]. In the latter reference. two different MPIFE formulations.
referred to as the “traditional™ and the “alternative.” are developed for arbitrarily

L

shaped conductors in layered uniaxial media.
The expressions for the dvadic kernel K* and the scalar kernel A% comprise

improper spectral integrals of the form

d Sen{f(k:)} /fL [“’“ *I)}k;‘dkr (6)

sink {r — 1’}

where k is the Fourier transform domain counterpart of &, and where the subscripts

c and s are assoctated with the cosine and sine functions. respectively, and n assumes

o the values 0 or 1. Using this notation, the nonzero elements of _E_A and A® for the
traditional MPIE formulation [31], [27] can be expressed as
KAz 2)e.2) = So{Vin(z])} (7)
@
' . lrm ' ,: ) ’ s
Ki(z,z]2".2") = —Jkonosﬂ{%_—z— [I{fmn(:|: Il S 1 )}} (S)
i
’ Lrm ' . 7 ;
Ki(z, 22" 2") = dkonosc(){‘ [SES T e )j} (9
L
-4 r - HKrn 7h ’ e N ]
KA (z,z|2',2) = _]konosﬂ{ B [Vl 212) = Vsl ;}} (10)
Kji(z, z|z',2) = dkoﬂosco{ - {V:,hmn(”‘”') - "",fmn(3|5')}} (11)
p y
ke \?
KA(z,2|a',2') = n¢Sa Hrm _ Hrn  Zom I (212
San Stm kp
ko)’ ,
+ frmibrn (Z_E) [:r'mn(:l: )} (12)
»
K, 512,5) = Saf 5 [Vl = Vi1 (13
P

7 ]




where 1y and kg denote. respectively. the intrinsic impedance and wavenumber of
free space, and kf, = k%4 3% The subscripts m and n in the above udicate that the
observation point (r,z) is in the mth layer. and the source point (', 2’} in the nth
laver. In deriving (7)-(13), use has been made of the transmission-line network ana-
log of the layered medium {32. Ch. 2. which is illustrated in Fig. 2 for a three-laver
geometry. This network actually represents two networks (having identicai configura-
tions, but in general different propagation constants and characteristic impedances)
that arise from the decomposition of the electromagnetic field into partial fields that
are transverse-magnetic (TM) and transverse-electric (TE) to 2 {32]. [33]. The su-
perscript p in Fig. 2 stands for e or h, which designate, respectively. the quantities
associated with the TM and TE networks. The propagation constants of the nth

transmission line section are found as

ke = \/kgsmym — =Rk2 L kE = \fReinpten — K (14)
~3In
where the branch of the square root is determined by the condition that Im{4? } < 0.

The corresponding characteristic impedances (and admittances) are given as

1 kf 1 k rn
7t = — = D0%n  Hh - F0T0K

B kot'zn ' " }nh kgn (13}

In (7)-(13), V¥, (z]z') and I}

fmn(2]2’) denote, respectively. the voltage and current at

z on the mth transmission line section, due to a 1 A current source at ' on the nth
line section. Similarly, VP (z]z'} and I?  (z]z") denote. respectively. the voltage
and current at z on the mth transmission line section, due to a 1V voltage source at
z" on the nth section. These transmission-line Green's functions are derived in the

appendix for a medium with an arbitrary number of layers.

3 Numerical Method

In this section, the method of moments [28], [29] is employed to solve the MPIE (3)
for the multiconductor transmission-line problem of Fig. 1. As the first step of the

numerical procedure, we approximate the cross section contours of the conductors by
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Figure 2: Transmission-line analogue of a layered medium.

-1




® 6

piecewise linear segments, as illustrated in Fig. 3. The arc-length coordinate ¢ will
now be associated with the approximated contours. instead of the original ones. The
method of moments requires that the unknown currents be expanded in terms of a

set of known basis functions with unknown coefficients. viz:

JHE) = 3 LATE. IO =3 10T, p= 12N (16
J 7]
where ’ (e
R (%, ‘
Cogi, - <<l
APy = ¢ ; (- ¢ : (17
3 () £f+%(p] — - &<ttt :
2+l 7
L 0. otherwise
with , ;
; T -7 .
£?+§ = J»&ﬁﬂ - Afﬂ = l"fH - 7'5) (13}
and

Lo & <i<t
Hf(f) = {19
0. otherwise

In the above expressions, the subscript j and the superscript p signify quantities
related to the jth expansion function or segment on the pth conductor (the superscript
p is omitted in Fig. 3 for simplicity).

The MPIE (3) is next tested with §II” and A?. In this process. the transverse
nabla operator in (3) is transferred to operate on the testing function by applyving

Green's first identity, viz:

/Af’(f) - Vi®(z,2)dl = —/{Vz-Af’(f)}d)(;r,:)a’f
ey T8.,(6)
— t . 1 . .)

/[ | el (20)

To save computer time, the following approximations are used in the testing proce-
dure:

[ ~ a0 ) (21)

1. X
fanoso = 3 (B MAEL) + 8y ALy (22)

8
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Figure 3: Linear segmentation model of a contour.
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where f({) represents the scalar potential ®(r.z). or a component of the vector po-
tential A{r.z). and where (.'f’+i is the arc-length coordinate of a poiut specified by
L 3

the position vector (cf. Fig. 3)

p p
T+
~ p L ¢ i1+1 U
=xTr otz = (23

r

1‘l+

o p

Furthermore. when computing the magnetic vector potential due to A*. we approxi-

mate the resulting integral as

[ KA sl =) ALY fK4 (el ) |, T + & ,nw(")} '
(24)
As a final step, we substitute the expansions (16) into the tested form of (3) to
convert it into a homogeneous matrix equation for the current expansion coefficients.

Assuming, for simplicity, that there are only two conductors. this equation has the

form
[lett] [Ziljl.ty] [212”] {lety]w [I;t} [0]
][] () e || ),
[ZZItt] {Zl?jl.ty] [Z??”} {Zzzty} [[Ju} - {O] {25
o] (2] () (e L] Lo
with the matrix elements given as
zg = S (A ans ) e 2 (a4 7L )
- Aq (q)pq ®3+11) Sq_ﬂ((b?z+l_(p?ild+l) (26)
J
zr= ‘;‘AP"‘y+“\’+‘A:’ifﬁ+]J(¢W %, ) (27)
Z,’-‘;"’“=%(A?3’y‘+rii’3ﬁ) 6(‘;4"’" _@ 4’”“) (28)
ZPQ WYY APAPQ WY ,32A:’¢f3 (2())

where the index j, when used as a subscript, should not be confused with the imagi-

nary unit. In (26)-(29), we have introduced the notation

ral
A= 1 r KA S e (30)
31
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o¥! :[q) [\"’“(.z'i’_x_. SN T 31
J

)= E for(p<1<l

(€ [n the general case with
23) comprlses 4N? blocks of submatrices.

where (r.7) = (t.y). and t=#({ Ll
V. conductors. the matrix in (

The kernel functions in the above have been defined by the spectral integrals
(T)-(13). which are evaluated by a composite Gauss quadrature. To accelerate the
convergence of these integrals, we first subtract from the integrands their large ar-
gument asymptotic forms. Furthermore, when |r — 2/l is larger than 2 — z'|. we
also emplov the method of averages [25], [34]. Finally, the closed-form integrals of
the asymptotic forms are added back to compensate for the subtracted terms. The
former explicitly exhibit their source-region logarithmic singularities. which are inte-
grable and are easily taken care of in evaluating the kernel integrals (30)-(31).

The equation (25) has nontrivial solutions only for those values of 3. which make
the matrix determinant vanish. These values are found by the Miiller method [33].

and the corresponding modal current coefficients are then determined from (25).

4 Numerical results

In this section, we present sample numerical results for the propagation constants and
modal current distributions for a variety of transmission-line configurations. In all
examples considered, the media are assumed lossless and nonmagnetic (i.e.. grn = 1
for all layers). Some of the structures analyzed comprise both uniaxial and isotropic
dielectric layers. If a layer is isotropic, its relative permittivity is denoted by ¢,. Only
the proper, bound modes, which propagate unattenuated with a real propagation
constant 3, are considered. The dispersion curves are given either for .3/kq, or for the
effective dielectric constant €. = (3/ko)?

In Fig. 4, we present dispersion curves for a circular-wire transmission line embed-
ded in a grounded two-layer isotropic medium with or without a top ground olane.
The latter configuration was first analyzed by Faché and De Zutter {21], using an

approach especially developed for wire conductors, and their results are shown by
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Figure 4: Dispersion curves for a circular-wire transmission line.




square svinbols in Fig. 4. In this figure. cuq is plotted versus the electrical thickness

of the substrate. d/)\y. where A, is the free-space wavelength. The wire is completely
embedded in the dielectric slab for A/d = 0.75 or 0.5, and in the air region when
h/d = 1.25 or 1.5. In the analysis. the circular cross section contour of the wire was
approximated by sixteen linear segments of equal length. We note that the results
for B/d = oc (unshielded structure) are indistinguishable from those for #3/d = 10.
This is to be expected. since the field of the bound mode is mainly trapped in the
substrate and near the conductor. The presence of the top ground plane presents a
noticeable disturbance to the bound wave only if it is close to the conductor or to the
dielectric interface.

In Fig. 5, we present dispersion curves for a three-conductor microstrip trans-
mission line, which supports three fundamental modes. The dielectric is made of
ceramic-impregnated teflon, known as Epsilam 10. which is uniaxial. with z, = 13
and ¢, = 10.2. As a check for the computer code, we have further divided the di-
electric slab into two layers. Two configurations have been analvzed. one without an
air gap (h/d = 0), and the other with an air gap (/d = 0.04). and the correspond-
ing results are shown in solid and dashed lines, respectively. These configurations
have been previously analyzed by Kitazawa [15]. the first one by a full-wave method
(square symbols), and the second by a quasi-static approach (dotted lines). It is of
interest to note that a small air gap between the ground plane and the dielectric slab
results in big changes in the dispersion curves. The longitudinal (transverse) current
distributions for modes 1, 2, and 3 are found to be even (odd). odd (even). and even
(odd), respectively.

In Fig. 6, we present dispersion curves for a three-wire transmission line embedded
in a grounded dielectric slab, which supports three fundamental modes. The solid
lines represent the results computed by Faché et al. [22] for the case of an isotropic
substrate (¢, = 4), whereas our results for the same substrate are illustrated by the
dotted lines. Note that a logarithmic scale is used for the frequency. Our results for
a uniaxial substrate, where ¢, = 3.9 and ¢, = 1.1, are indicated by three different
symbols. As can be seen from the figure, even this slight anisotropy has a noticeable

effect on the dispersion curves. In the isotropic case. all three modes remain in the
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Figure 5: Dispersion curves for a three-strip microstrip transmission line.
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bound regime in the frequency range considered. In the uniaxial case. mode 2 enteys
the leaky regime [36] at a frequency between 30 to 10 GHz. above which the dominant
slab mode. indicated as TMg in Fig. 6. 1s excited. The dispersion curve of the latrer
is obtained by finding the zero of (31) (see the appendixi. The longitudinal and
transverse modal current distributions at f = 10 GHz are shown in Fie. 7. For modes
1. 2. and 3, the longitudinal (transverse) currents are even toddi. even fodd 1. and odd
{(even), respectively. Because of this svimmetry property. we only plot the currents
on the left and center conductors. We note that the longitudinal and transverse
currents are in phase quadrature. which is characteristic of bound modes on lossless
transmission lines.

We next consider three transmission line structures. which differ in the cross sec-
tion shape of the conductors, as illustrated in Fig. 8. The cross sections of the
conductors are (a) trapezoidal {which may arise as a result of an epiraxial growth
process), (b) rectangular (the ideal case). and (c) inverted trapezoidal {which may be
due to etching undercuts). The dispersion curves for the three fundamental modes
that each of the three transmission lines may support are plotted in Fig. 9. The
longitudinal (transverse) current distributions for modes 1. 2. and 3 are {ound to he
even (odd), odd (even), and even {odd). respectively. In Fig. 9. we also show the
quasi-static results obtained by Schroeder and Wolff [2] for the same transmission
lines. but having a finite-width substrate. We observe that the dispersion curves for
configurations (a) and (b) differ less than those for () and (¢). This is expected.
since in the former two geometries the conductor widths adjacent to the dielectnic
slab (where there is a highly concentrated field) are the same. We also note that
the quasi-static results of [2] are very c.ose to the low-frequency limits of mode 3 of
our results. However, it is not clear from 2] to which mode these quasi-static values
correspond.

In Fig. 10, we present dispersion curves for a two-strip transmission line in an
unshielded medium comprising both uniaxial and isotropic layvers (see the inset). Since
there are only two conductors and there are no ground planes in this structure. we
expect it to have only one non-cutoff fundamental mode (called mode 1 1n Fig. 10).

Nevertheless, an additional non-cutoff mode (called mode 2) has been found. In
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addition to the dispersion curves of these two modes. we also plot in Fig. 10 the
dispersion curves of the first two slab modes (indicated as TEy and TN, 5 computed
from (34) of the appendix. The longitudinal currents of mode 1 on the 1wo strips
(not shown) are found to be in different directions. whereas those of mode 2 are in
the same direction. Hence. mode 2 is similar to the fundamental mode of a coated
conducting cylinder, where the surface current on the circumference of the evlinder
flows in the same direction, and whose suitability as a single-conductor transmission
line was studied by Goubau [37]. A salient feature of this Goubau mode is that its 74
is very close at low frequencies to that of free space. and that its field is very loosely
bound to the dielectric. In fact. when we replace the two strips in the configuration
shown in Fig. 10 by a single strip, we still can find a mode. which behaves simi'arly

to the aforementioned mode 2.

5 Conclusion

A mixed-potential integral equation {(MPIE) formulation has been implemented in
conjunction with the method of moments to compute the propagation constants and
modal currents of a multiconductor transmission line embedded in a laterallv open
multilayered uniaxial medium. The approach is general and flexible. and can handie
both open and shielded structures. It is applicable 1o conductors of arbitrarv cross
section. including trapezoidal. which often arises in practice due to underetching or
as a result of the epitaxial growth process. Sample numerical results have been pre-
sented for several transmission-line configurations and. when possible. compared with
available published data, obtained by specialized techniques not easily extendable to

conductors of arbitrary cross section.




Appendix
Transmission Line Green’s Functions

Consider a transmission-line network analog of the lavered medium of Fig. 1. formed
by a tandem connection of transmission line sections. each corresponding to a dielec-
tric layer (cf. Fig. 2). Let the network be excited by a I A current source located at
2" in the nth line section. Then. the voltage and current at = within any line section.

say the mth. satisfy the transmission-line equations {32]

A
—éifn—r}‘ = *‘J/*f)mlﬁz[;pmn

) (32)
dI?

—T = kP YPVE 8z~ )

d- imim7imn

where the propagation constant A%, and characteristic impedance Z2, (and admit-

tance Y?) have been defined in (14) and (15). respectively. The superscript p. which

stands for e or h. as explained in Section 2, will henceforth be left out for brevity.
When m = n, i.e.. the source and observation points are within the same nth line

section, the voltage Vi ., is readily found from (32) as (cf. [32. p. 213]. [26])

"]kznl"—’

Vinl2le) = Zo —5— |1 + ettt <-:n] [1 + Tperithntomn=sll g3
where
W, =1~ T, T, ¢ /2kmin (34)

— —

and . = min(z,2'), z5 = max(z.z'). In the above, I', and [, are the voltage
reflection coefficients “looking to the left” and “looking to the right.” respectively. at
the two interior ends of this line section, as illustrated in Fig. 11. These reflection

coefficients can be found as
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Figure 11: Transmission line section containing a current source.
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with the terminal impedances given by the recursive relations
—
— o -
S _ g Lnwi )l tan (b g gy o
n — Zntl ‘;()l

< ,
Zn:t. + J an:l tani l‘\':.”tl({“i})
where the upper and lower signs correspond to the right and left arrows, respectively.
For m # n. Vi n.(z]2") is readily found from (32) and (33). by enforcing the
continuity of the voltage and current at the interfaces. As a result. we obtain (26}
. - .
‘x,nn(:n'«}-llz ) ft',mn(:) .o+l S m S A

“;.mn(:lzl) = — (37}

Vion(znl2) Tomn(2). l<m<n-1

where
_
—_ e-—)k,m(z-:m) — m—1 (1 + I’l) ¢ sk d,
Tomn(z) = — [1 + T e—-ﬂkzm(:mq-x—z)] — (39)
]_ + Fm e"j')k:mdm 1=n+41 1 -+ Fl C—_;?l\'_v,d,
TN ke,
— e~ Ikem{zm41=32) — . . n—1 (1 + [,) e IR
Tv,mn(z) - {l + rm e"_]zkzm(-‘_-m)] H pa— {3

[ sonnud .
1 + Fm e‘]kamdm

It is understood in the above that the product terms are equal to one if the lower

1=m+1 l + F!- 6*,'2‘;::1'1;

limits exceed the upper limits.

The transmission-line Green’s functions can be efficiently implemented into a com-
puter program, as explained below. First, we recognized that (33) may be written
as

, ; ;= =
Vinn(2|2) = Za fi{ny 252 T Ty (10)
which serves to define the function f;. The corresponding current can then easily be
found from the first of (32) as
' T LT >, o
Ii.nn(ztz)zifZ(nQZ;ZZIFn;IFn), :<2 (417

which defines the function f;. In a like manner, we may write (37) as

— — —_
, filnzaens 2 T Fn> fa [m:n: z; Fji(mgm;} .om>n
Vimn(2]2") = 25 L= = —
filnza, 2" T [‘n> - fa {m;n;:; [‘Jl(mgxn)] ) m < n
(12)
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which defines the functions fs and f;. The corresponding current can again be tound

from the first of (32) as

PR . —
folnizpen s Do l,l) I3 {m:n:::— Ui, < | - o> on
- ~, —_— ' -
[:'mn(~i~ ) = , — — i —
- fa (n;:n:: S AP [,1) . {m:n::: - ljg(,,isj@)} . om < on
{131

The current [, ,,, and voltage V, ,,», due to a unit-strength voltage source in the
nth line section. satisfy a set of equations dual to (32). Hence. we may obtain these
voltage and current transmission-line Green's functions from (40)-(43) by making
the substitutions V — I, I — V. and Z — Y. Note that the last substitution
causes all reflection coefficients to change signs. We observe that only four subrou-
tines. corresponding to the functions f; through fy. are required to implement all the

transmission-line Green's functions in the computer code.
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